File: otbTrainBoost.txx

package info (click to toggle)
otb 6.6.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 47,068 kB
  • sloc: cpp: 316,755; ansic: 4,474; sh: 1,610; python: 497; perl: 92; makefile: 82; java: 72
file content (109 lines) | stat: -rw-r--r-- 5,080 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
/*
 * Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbTrainBoost_txx
#define otbTrainBoost_txx
#include "otbLearningApplicationBase.h"
#include "otbBoostMachineLearningModel.h"

namespace otb
{
namespace Wrapper
{

  template <class TInputValue, class TOutputValue>
  void
  LearningApplicationBase<TInputValue,TOutputValue>
  ::InitBoostParams()
  {
    AddChoice("classifier.boost", "Boost classifier");
    SetParameterDescription("classifier.boost", "This group of parameters allows setting Boost classifier parameters. "
        "See complete documentation here \\url{http://docs.opencv.org/modules/ml/doc/boosting.html}.");
    //BoostType
    AddParameter(ParameterType_Choice, "classifier.boost.t", "Boost Type");
    AddChoice("classifier.boost.t.discrete", "Discrete AdaBoost");
    SetParameterDescription("classifier.boost.t.discrete",
      "This procedure trains the classifiers on weighted versions of the training "
      "sample, giving higher weight to cases that are currently misclassified. "
      "This is done for a sequence of weighter samples, and then the final "
      "classifier is defined as a linear combination of the classifier from "
      "each stage.");
    AddChoice("classifier.boost.t.real",
      "Real AdaBoost (technique using confidence-rated predictions "
      "and working well with categorical data)");
    SetParameterDescription("classifier.boost.t.real",
      "Adaptation of the Discrete Adaboost algorithm with Real value");
    AddChoice("classifier.boost.t.logit",
      "LogitBoost (technique producing good regression fits)");
    SetParameterDescription("classifier.boost.t.logit",
      "This procedure is an adaptive Newton algorithm for fitting an additive "
      "logistic regression model. Beware it can produce numeric instability.");
    AddChoice("classifier.boost.t.gentle",
      "Gentle AdaBoost (technique setting less weight on outlier data points "
      "and, for that reason, being often good with regression data)");
    SetParameterDescription("classifier.boost.t.gentle",
      "A modified version of the Real Adaboost algorithm, using Newton stepping "
      "rather than exact optimization at each step.");
    SetParameterString("classifier.boost.t", "real");
    SetParameterDescription("classifier.boost.t", "Type of Boosting algorithm.");
    //Do not expose SplitCriteria
    //WeakCount
    AddParameter(ParameterType_Int, "classifier.boost.w", "Weak count");
    SetParameterInt("classifier.boost.w",100);
    SetParameterDescription("classifier.boost.w","The number of weak classifiers.");
    //WeightTrimRate
    AddParameter(ParameterType_Float, "classifier.boost.r", "Weight Trim Rate");
    SetParameterFloat("classifier.boost.r",0.95);
    SetParameterDescription("classifier.boost.r",
      "A threshold between 0 and 1 used to save computational time. "
      "Samples with summary weight <= (1 - weight_trim_rate) do not participate in"
      " the next iteration of training. Set this parameter to 0 to turn off this "
      "functionality.");
    //MaxDepth : Not sure that this parameter has to be exposed.
    AddParameter(ParameterType_Int, "classifier.boost.m", "Maximum depth of the tree");
    SetParameterInt("classifier.boost.m",1);
    SetParameterDescription("classifier.boost.m","Maximum depth of the tree.");
  }

  template <class TInputValue, class TOutputValue>
  void
  LearningApplicationBase<TInputValue,TOutputValue>
  ::TrainBoost(typename ListSampleType::Pointer trainingListSample,
               typename TargetListSampleType::Pointer trainingLabeledListSample,
               std::string modelPath)
  {
    typedef otb::BoostMachineLearningModel<InputValueType, OutputValueType> BoostType;
    typename BoostType::Pointer boostClassifier = BoostType::New();
    boostClassifier->SetRegressionMode(this->m_RegressionFlag);
    boostClassifier->SetInputListSample(trainingListSample);
    boostClassifier->SetTargetListSample(trainingLabeledListSample);
    boostClassifier->SetBoostType(GetParameterInt("classifier.boost.t"));
    boostClassifier->SetWeakCount(GetParameterInt("classifier.boost.w"));
    boostClassifier->SetWeightTrimRate(GetParameterFloat("classifier.boost.r"));
    boostClassifier->SetMaxDepth(GetParameterInt("classifier.boost.m"));

    boostClassifier->Train();
    boostClassifier->Save(modelPath);
  }

} //end namespace wrapper
} //end namespace otb

#endif