1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
/*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <iomanip>
#include <iostream>
#include "otbVectorImage.h"
#include "otbImageFileReader.h"
#include "otbForwardSensorModel.h"
#include "otbInverseSensorModel.h"
// Exercise the Spot5 sensor model on the image border
int main(int argc, char* argv[])
{
if (argc != 3)
{
std::cout << argv[0] << " <input filename> <output filename>" << std::endl;
return EXIT_FAILURE;
}
char * filename = argv[1];
char* outFilename = argv[2];
typedef otb::VectorImage<double, 2> ImageType;
typedef otb::ImageFileReader<ImageType> ReaderType;
otb::DEMHandler::Instance()->SetDefaultHeightAboveEllipsoid(16.19688987731934);
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(filename);
reader->UpdateOutputInformation();
ImageType::Pointer image = reader->GetOutput();
ImageType::RegionType region = image->GetLargestPossibleRegion();
typedef otb::ForwardSensorModel<double> ForwardSensorModelType;
ForwardSensorModelType::Pointer forwardSensorModel = ForwardSensorModelType::New();
forwardSensorModel->SetImageGeometry(reader->GetOutput()->GetImageKeywordlist());
if (forwardSensorModel->IsValidSensorModel() == false)
{
std::cout << "Invalid Model pointer m_Model == NULL!\n The ossim keywordlist is invalid!" << std::endl;
return EXIT_FAILURE;
}
typedef otb::InverseSensorModel<double> InverseSensorModelType;
InverseSensorModelType::Pointer inverseSensorModel = InverseSensorModelType::New();
inverseSensorModel->SetImageGeometry(reader->GetOutput()->GetImageKeywordlist());
if (inverseSensorModel->IsValidSensorModel() == false)
{
std::cout << "Invalid Model pointer m_Model == NULL!\n The ossim keywordlist is invalid!" << std::endl;
return EXIT_FAILURE;
}
const int radius = 10;
const double gridstep = 0.1;
itk::Point<double, 2> imagePoint;
// Test upper left corner
std::cout << " --- upper left corner ---" << std::endl;
for (imagePoint[0] = region.GetIndex(0) - radius; imagePoint[0] < region.GetIndex(0) + radius; imagePoint[0] += gridstep)
{
for (imagePoint[1] = region.GetIndex(1) - radius; imagePoint[1] < region.GetIndex(1) + radius; imagePoint[1] += gridstep)
{
itk::Point<double, 2> geoPoint;
geoPoint = forwardSensorModel->TransformPoint(imagePoint);
std::cout << "Image to geo: " << imagePoint << " -> " << geoPoint << "\n";
if (vnl_math_isnan(geoPoint[0]) || vnl_math_isnan(geoPoint[1]))
{
return EXIT_FAILURE;
}
itk::Point<double, 2> reversedImagePoint;
reversedImagePoint = inverseSensorModel->TransformPoint(geoPoint);
std::cout << "Geo to image: " << geoPoint << " -> " << reversedImagePoint << "\n";
if (vnl_math_isnan(reversedImagePoint[0]) || vnl_math_isnan(reversedImagePoint[1]))
{
return EXIT_FAILURE;
}
}
}
// Test lower left corner
std::cout << " --- lower left corner ---" << std::endl;
for (imagePoint[0] = region.GetIndex(0) - radius; imagePoint[0] < region.GetIndex(0) + radius; imagePoint[0] += gridstep)
{
for (imagePoint[1] = region.GetIndex(1) + region.GetSize(1) - radius; imagePoint[1] < region.GetIndex(1) + region.GetSize(1) + radius; imagePoint[1] += gridstep)
{
itk::Point<double, 2> geoPoint;
geoPoint = forwardSensorModel->TransformPoint(imagePoint);
std::cout << "Image to geo: " << imagePoint << " -> " << geoPoint << "\n";
if (vnl_math_isnan(geoPoint[0]) || vnl_math_isnan(geoPoint[1]))
{
return EXIT_FAILURE;
}
itk::Point<double, 2> reversedImagePoint;
reversedImagePoint = inverseSensorModel->TransformPoint(geoPoint);
std::cout << "Geo to image: " << geoPoint << " -> " << reversedImagePoint << "\n";
if (vnl_math_isnan(reversedImagePoint[0]) || vnl_math_isnan(reversedImagePoint[1]))
{
return EXIT_FAILURE;
}
}
}
// Test lower right corner
std::cout << " --- lower right corner ---" << std::endl;
for (imagePoint[0] = region.GetIndex(0) + region.GetSize(0) - radius; imagePoint[0] < region.GetIndex(0) + region.GetSize(0) + radius; imagePoint[0] += gridstep)
{
for (imagePoint[1] = region.GetIndex(1) + region.GetSize(1) - radius; imagePoint[1] < region.GetIndex(1) + region.GetSize(1) + radius; imagePoint[1] += gridstep)
{
itk::Point<double, 2> geoPoint;
geoPoint = forwardSensorModel->TransformPoint(imagePoint);
std::cout << "Image to geo: " << imagePoint << " -> " << geoPoint << "\n";
if (vnl_math_isnan(geoPoint[0]) || vnl_math_isnan(geoPoint[1]))
{
return EXIT_FAILURE;
}
itk::Point<double, 2> reversedImagePoint;
reversedImagePoint = inverseSensorModel->TransformPoint(geoPoint);
std::cout << "Geo to image: " << geoPoint << " -> " << reversedImagePoint << "\n";
if (vnl_math_isnan(reversedImagePoint[0]) || vnl_math_isnan(reversedImagePoint[1]))
{
return EXIT_FAILURE;
}
}
}
// Test upper right corner
std::cout << " --- upper right corner ---" << std::endl;
for (imagePoint[0] = region.GetIndex(0) + region.GetSize(0) - radius; imagePoint[0] < region.GetIndex(0) + region.GetSize(0) + radius; imagePoint[0] += gridstep)
{
for (imagePoint[1] = region.GetIndex(1) - radius; imagePoint[1] < region.GetIndex(1) + radius; imagePoint[1] += gridstep)
{
itk::Point<double, 2> geoPoint;
geoPoint = forwardSensorModel->TransformPoint(imagePoint);
std::cout << "Image to geo: " << imagePoint << " -> " << geoPoint << "\n";
if (vnl_math_isnan(geoPoint[0]) || vnl_math_isnan(geoPoint[1]))
{
return EXIT_FAILURE;
}
itk::Point<double, 2> reversedImagePoint;
reversedImagePoint = inverseSensorModel->TransformPoint(geoPoint);
std::cout << "Geo to image: " << geoPoint << " -> " << reversedImagePoint << "\n";
if (vnl_math_isnan(reversedImagePoint[0]) || vnl_math_isnan(reversedImagePoint[1]))
{
return EXIT_FAILURE;
}
}
}
// generat the output value along a segment crossing the lower image border
// at the center position
itk::Point<double, 2> imagePoint1;
imagePoint1[0] = region.GetIndex(0) + region.GetSize(0)/2;
imagePoint1[1] = region.GetIndex(1) + region.GetSize(1) - radius;
itk::Point<double, 2> imagePoint2;
imagePoint2[0] = region.GetIndex(0) + region.GetSize(0)/2;
imagePoint2[1] = region.GetIndex(1) + region.GetSize(1) + radius;
itk::Point<double, 2> geoPoint1, geoPoint2;
geoPoint1 = forwardSensorModel->TransformPoint(imagePoint1);
geoPoint2 = forwardSensorModel->TransformPoint(imagePoint2);
itk::Vector<double, 2> geoDir;
geoDir[0] = geoPoint2[0] - geoPoint1[0];
geoDir[1] = geoPoint2[1] - geoPoint1[1];
const int nbStep = 50;
itk::Vector<double, 2> geoStep = geoDir / nbStep;
std::ofstream file;
file.open(outFilename);
file << "# image_x image_y geo_x geo_y reversed_image_x reversed_image_y" << std::endl;
file << std::setprecision(15);
for (int i = 0; i < nbStep; ++i)
{
itk::Point<double, 2> geoPoint;
geoPoint[0] = geoPoint1[0] + geoStep[0] * i;
geoPoint[1] = geoPoint1[1] + geoStep[1] * i;
itk::Point<double, 2> reversedImagePoint;
reversedImagePoint = inverseSensorModel->TransformPoint(geoPoint);
file << geoPoint[0] << "\t" << geoPoint[1] << "\t"
<< reversedImagePoint[0] << "\t" << reversedImagePoint[1] << std::endl;
if (vnl_math_isnan(geoPoint[0]) || vnl_math_isnan(geoPoint[1]))
{
return EXIT_FAILURE;
}
}
file.close();
return EXIT_SUCCESS;
}
|