1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
|
/*
* Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
* Copyright (C) 2007-2012 Institut Mines Telecom / Telecom Bretagne
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbWaveletFilterBank_h
#define otbWaveletFilterBank_h
#include "itkProgressReporter.h"
#include "itkImageToImageFilter.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkImageRegionIterator.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkNeighborhoodInnerProduct.h"
#include "otbWaveletOperatorBase.h"
namespace otb {
/** \class WaveletFilterBank
* \brief One level stationary wavelet transform
*
* This implementation performs a low-pass / high-pass wavelet transformation
* of an image. The wavelet transformation is defined by a inner product
* (ie. convolution-like operation).
*
* the inner operator are supposed to be defined through 1D filters. Then, the
* forward transformation yields \f$ 2^{\text{Dim}} \f$ output images, while the inverse
* transformation requires \f$ 2^{\text{Dim}} \f$ input image for one output.
*
* In case of 1D, GetOutput(0) -> LowPass
*
* GetOutput(1) -> HighPass
*
* In case of 2D, Line (Dim 1) Col (Dim 0)
*
* GetOutput(0) -> LowPass, LowPass
*
* GetOutput(1) -> LowPass, HighPass
*
* GetOutput(2) -> HighPass, LowPass
*
* GetOutput(3) -> HighPass, HighPass
*
* In case of nD data, assume x_n=0 stands for LowPass and x_n=1 stands for HighPass
* at a give dimension n. Then
*
* GetOutput( x_(n-1) << (n-1) + x_(n-2) << (n-2) + ... + x_1 << 1 + x_0 )
*
* Dim (n-1) Dim (n-2) Dim (n-3) ... Dim 1 Dim 0
*
* -> x_(n-1) x_(n-2) x_(n-3) x_1 x_0
*
* And conversely in the inverse transformation.
*
* \todo: At present version, there is not consideration on meta data information that can be transmitted
* from the input(s) to the output(s)...
*
* The two choice (Wavelet::FORWARD/Wavelet::INVERSE) yield specific implementation of the templates (header redeclaration
* is given at bottom of otbWaveletFilterBank.h for the Wavelet::INVERSE case)
*
* \sa WaveletOperator
*
* \ingroup Streamed
*
* \ingroup OTBWavelet
*/
template <class TInputImage, class TOutputImage,
class TWaveletOperator,
Wavelet::WaveletDirection TDirectionOfTransformation>
class ITK_EXPORT WaveletFilterBank
: public itk::ImageToImageFilter<TInputImage, TOutputImage>
{
public:
/** Standard typedefs */
typedef WaveletFilterBank Self;
typedef itk::ImageToImageFilter<TInputImage, TOutputImage> Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
/** Type macro */
itkNewMacro(Self);
/** Creation through object factory macro */
itkTypeMacro(WaveletFilterBank, ImageToImageFilter);
protected:
WaveletFilterBank();
virtual ~WaveletFilterBank();
private:
WaveletFilterBank(const Self &);
void operator =(const Self&);
}; // end of class
/** \class WaveletFilterBank
* \brief Template specialization of FilterBank for forward transformation
*
* This implementation performs a low-pass / high-pass wavelet transformation
* of an image. The wavelet transformation is defined by a inner product
* (ie. convolution-like operation).
*
* The inner operator are supposed to be defined through 1D filters. Then, the
* forward transformation yields \f$ 2^{\text{Dim}} \f$ output images, while the inverse
* transformation requires \f$ 2^{\text{Dim}} \f$ input image for one output.
*
* In case of 1D, GetOutput(0) -> LowPass
*
* GetOutput(1) -> HighPass
*
* In case of 2D, Line (Dim 1) Col (Dim 0)
*
* GetOutput(0) -> LowPass, LowPass
*
* GetOutput(1) -> LowPass, HighPass
*
* GetOutput(2) -> HighPass, LowPass
*
* GetOutput(3) -> HighPass, HighPass
*
* In case of nD data, assume x_n=0 stands for LowPass and x_n=1 stands for HighPass
* at a give dimension n. Then
*
* GetOutput( x_(n-1) << (n-1) + x_(n-2) << (n-2) + ... + x_1 << 1 + x_0 )
*
* Dim (n-1) Dim (n-2) Dim (n-3) ... Dim 1 Dim 0
*
* -> x_(n-1) x_(n-2) x_(n-3) x_1 x_0
*
* And conversely in the inverse transformation.
*
* \todo: At present version, there is not consideration on meta data information that can be transmitted
* from the input(s) to the output(s)...
*
* \sa WaveletOperator
*
* \ingroup OTBWavelet
*/
template <class TInputImage, class TOutputImage, class TWaveletOperator>
class ITK_EXPORT WaveletFilterBank<TInputImage, TOutputImage, TWaveletOperator, Wavelet::FORWARD>
: public itk::ImageToImageFilter<TInputImage, TOutputImage>
{
public:
/** Standard typedefs */
typedef WaveletFilterBank Self;
typedef itk::ImageToImageFilter<TInputImage, TOutputImage> Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
/** Type macro */
itkNewMacro(Self);
/** Creation through object factory macro */
itkTypeMacro(WaveletFilterBank, ImageToImageFilter);
/** Template parameters typedefs */
typedef TInputImage InputImageType;
typedef typename InputImageType::Pointer InputImagePointerType;
typedef typename InputImageType::RegionType InputImageRegionType;
typedef typename InputImageType::SizeType InputSizeType;
typedef typename InputImageType::IndexType InputIndexType;
typedef typename InputImageType::PixelType InputPixelType;
typedef TOutputImage OutputImageType;
typedef typename OutputImageType::Pointer OutputImagePointerType;
typedef typename OutputImageType::RegionType OutputImageRegionType;
typedef typename OutputImageType::SizeType OutputSizeType;
typedef typename OutputImageType::IndexType OutputIndexType;
typedef typename OutputImageType::PixelType OutputPixelType;
typedef TWaveletOperator WaveletOperatorType;
typedef typename WaveletOperatorType::LowPassOperator LowPassOperatorType;
typedef typename WaveletOperatorType::HighPassOperator HighPassOperatorType;
typedef Wavelet::WaveletDirection DirectionOfTransformationEnumType;
itkStaticConstMacro(DirectionOfTransformation, DirectionOfTransformationEnumType, Wavelet::FORWARD);
/** Dimension */
itkStaticConstMacro(InputImageDimension, unsigned int, TInputImage::ImageDimension);
itkStaticConstMacro(OutputImageDimension, unsigned int, TOutputImage::ImageDimension);
/**
* Set/Get the level of up sampling of the filter used in the A-trou algorithm.
*/
itkGetMacro(UpSampleFilterFactor, unsigned int);
itkSetMacro(UpSampleFilterFactor, unsigned int);
/**
* Set/Get the level of down sampling of the image used in forward algorithm.
* (or upsampling in the inverse case)
*
* In this implementation, we are not dealing with M-band decomposition then m_SubsampleImageFactor
* is most likely to be 1 or 2... but in any case integer and not real...
*/
itkGetMacro(SubsampleImageFactor, unsigned int);
itkSetMacro(SubsampleImageFactor, unsigned int);
protected:
WaveletFilterBank();
~WaveletFilterBank() override {}
/** GenerateOutputInformation
* Set the size of the output image depending on the decimation factor
* Copy information from the input image if existing.
**/
void GenerateOutputInformation() override;
/** The forward transformation needs a larger input requested
* region than the output requested region (larger by subsampling
* but also by the kernel size used in the filter bank).
*
* Then, the class needs to provide an implementation
* for GenerateInputRequestedRegion() in order to inform the
* pipeline execution model.
*
* \sa ImageToImageFilter::GenerateInputRequestedRegion() */
void GenerateInputRequestedRegion()
throw (itk::InvalidRequestedRegionError) override;
/** BeforeThreadedGenerateData.
* It allocates also internal images
*/
void BeforeThreadedGenerateData() override;
/** Internal Data Allocation
* If m_SubsampleImageFactor != 1, internal data with progressive region size
* subsampling if required...
*/
virtual void AllocateInternalData(const OutputImageRegionType& outputRegion);
/** AfterThreadedGenerateData.
* It enforce memory destruction of internal images
*/
void AfterThreadedGenerateData() override;
/** CallCopyOutputRegionToInputRegion
* Since input and output image may be of different size when a
* subsampling factor has tp be applied, Region estimation
* functions has to be reimplemented
*/
void CallCopyOutputRegionToInputRegion
(InputImageRegionType& destRegion, const OutputImageRegionType& srcRegion) override;
void CallCopyInputRegionToOutputRegion
(OutputImageRegionType& destRegion, const InputImageRegionType& srcRegion) override;
/** CallCopyOutputRegionToInputRegion
* This function is also redefined in order to adapt the shape of the regions with
* resect to the direction (among the dimensions) of the filtering.
*/
virtual void CallCopyOutputRegionToInputRegion(unsigned int direction,
InputImageRegionType& destRegion,
const OutputImageRegionType& srcRegion);
virtual void CallCopyInputRegionToOutputRegion(unsigned int direction,
OutputImageRegionType& destRegion,
const InputImageRegionType& srcRegion);
/** Generate data redefinition */
void ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, itk::ThreadIdType threadId) override;
/** Iterative call to the forward filter bank at each dimension. */
virtual void ThreadedGenerateDataAtDimensionN(unsigned int idx, unsigned int direction,
itk::ProgressReporter& reporter,
const OutputImageRegionType& outputRegionForThread, itk::ThreadIdType threadId);
private:
WaveletFilterBank(const Self &);
void operator =(const Self&);
unsigned int m_UpSampleFilterFactor;
unsigned int m_SubsampleImageFactor;
/** the easiest way to store internal images is to keep track of the splits
* at each direction. Then, std::vector< InternalImagesTabular > is a tab of
* size ImageDimension-1 and each InternalImagesTabular contains intermediate
* images.
*/
typedef std::vector<OutputImagePointerType> InternalImagesTabular;
std::vector<InternalImagesTabular> m_InternalImages;
}; // end of class
/** \class WaveletFilterBank
* \brief Template specialization of FilterBank for inverse transformation
*
* This implementation performs a low-pass / high-pass wavelet transformation
* of an image. The wavelet transformation is defined by a inner product
* (ie. convolution-like operation).
*
* The inner operator are supposed to be defined through 1D filters. Then, the
* forward transformation yields \f$ 2^{\text{Dim}} \f$ output images, while the inverse
* transformation requires \f$ 2^{\text{Dim}} \f$ input image for one output.
*
* In case of 1D, GetOutput(0) -> LowPass
*
* GetOutput(1) -> HighPass
*
* In case of 2D, Line (Dim 1) Col (Dim 0)
*
* GetOutput(0) -> LowPass, LowPass
*
* GetOutput(1) -> LowPass, HighPass
*
* GetOutput(2) -> HighPass, LowPass
*
* GetOutput(3) -> HighPass, HighPass
*
* In case of nD data, assume x_n=0 stands for LowPass and x_n=1 stands for HighPass
* at a give dimension n. Then
*
* GetOutput( x_(n-1) << (n-1) + x_(n-2) << (n-2) + ... + x_1 << 1 + x_0 )
*
* Dim (n-1) Dim (n-2) Dim (n-3) ... Dim 1 Dim 0
*
* -> x_(n-1) x_(n-2) x_(n-3) x_1 x_0
*
* And conversely in the inverse transformation.
*
* \todo: At present version, there is not consideration on meta data information that can be transmitted
* from the input(s) to the output(s)...
*
* \sa WaveletOperator
*
* \ingroup OTBWavelet
*/
template <class TInputImage, class TOutputImage, class TWaveletOperator>
class ITK_EXPORT WaveletFilterBank<TInputImage, TOutputImage, TWaveletOperator, Wavelet::INVERSE>
: public itk::ImageToImageFilter<TInputImage, TOutputImage>
{
public:
/** Standard typedefs */
typedef WaveletFilterBank Self;
typedef itk::ImageToImageFilter<TInputImage, TOutputImage> Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
/** Type macro */
itkNewMacro(Self);
/** Creation through object factory macro */
itkTypeMacro(WaveletFilterBank, ImageToImageFilter);
/** Template parameters typedefs */
typedef TInputImage InputImageType;
typedef typename InputImageType::Pointer InputImagePointerType;
typedef typename InputImageType::RegionType InputImageRegionType;
typedef typename InputImageType::SizeType InputSizeType;
typedef typename InputImageType::IndexType InputIndexType;
typedef typename InputImageType::PixelType InputPixelType;
typedef TOutputImage OutputImageType;
typedef typename OutputImageType::Pointer OutputImagePointerType;
typedef typename OutputImageType::RegionType OutputImageRegionType;
typedef typename OutputImageType::SizeType OutputSizeType;
typedef typename OutputImageType::IndexType OutputIndexType;
typedef typename OutputImageType::PixelType OutputPixelType;
typedef TWaveletOperator WaveletOperatorType;
typedef typename WaveletOperatorType::LowPassOperator LowPassOperatorType;
typedef typename WaveletOperatorType::HighPassOperator HighPassOperatorType;
typedef Wavelet::WaveletDirection DirectionOfTransformationEnumType;
itkStaticConstMacro(DirectionOfTransformation, DirectionOfTransformationEnumType, Wavelet::INVERSE);
/** Dimension */
itkStaticConstMacro(InputImageDimension, unsigned int, TInputImage::ImageDimension);
itkStaticConstMacro(OutputImageDimension, unsigned int, TOutputImage::ImageDimension);
/**
* Set/Get the level of up sampling of the filter used in the A-trou algorithm.
*/
itkGetMacro(UpSampleFilterFactor, unsigned int);
itkSetMacro(UpSampleFilterFactor, unsigned int);
/**
* Set/Get the level of down sampling of the image used in forward algorithm.
* (or upsampling in the inverse case)
*
* In this implementation, we are dealing with M-band decomposition then m_SubsampleImageFactor
* is most likely to be 1 or 2... but in any case integer and not real...
*/
itkGetMacro(SubsampleImageFactor, unsigned int);
itkSetMacro(SubsampleImageFactor, unsigned int);
protected:
WaveletFilterBank();
~WaveletFilterBank() override {}
void VerifyInputInformation() override
{
}
/** GenerateOutputInformation
* Set the size of the output image depending on the decimation factor
* Copy information from the input image if existing.
**/
void GenerateOutputInformation() override;
/** The inverse transformation needs larger inputs requested
* region than the output requested region (larger by subsampling
* but also by the kernel size used in the filter bank).
*
* Then, the class needs to provide an implementation
* for GenerateInputRequestedRegion() in order to inform the
* pipeline execution model.
*
* \sa ImageToImageFilter::GenerateInputRequestedRegion() */
void GenerateInputRequestedRegion()
throw (itk::InvalidRequestedRegionError) override;
/** BeforeThreadedGenerateData
* If SubsampleImageFactor neq 1, it is necessary to up sample input images in the Wavelet::INVERSE mode
*/
void BeforeThreadedGenerateData() override;
/** Internal Data Allocation
* If m_SubsampleImageFactor != 1, internal data with progressive region size
* subsampling if required...
*/
virtual void AllocateInternalData(const OutputImageRegionType& outputRegion);
/** AfterThreadedGenerateData.
* It enforce memory destruction of internal images
*/
void AfterThreadedGenerateData() override;
/** CallCopyOutputRegionToInputRegion
* Since input and output image may be of different size when a
* subsampling factor has tp be applied, Region estimation
* functions has to be reimplemented
*/
void CallCopyOutputRegionToInputRegion
(InputImageRegionType& destRegion, const OutputImageRegionType& srcRegion) override;
void CallCopyInputRegionToOutputRegion
(OutputImageRegionType& destRegion, const InputImageRegionType& srcRegion) override;
/** CallCopyOutputRegionToInputRegion
* This function is also redefined in order to adapt the shape of the regions with
* resect to the direction (among the dimensions) of the filtering.
*/
virtual void CallCopyOutputRegionToInputRegion(unsigned int direction,
InputImageRegionType& destRegion,
const OutputImageRegionType& srcRegion);
virtual void CallCopyInputRegionToOutputRegion(unsigned int direction,
OutputImageRegionType& destRegion,
const InputImageRegionType& srcRegion);
/** Generate data redefinition */
void ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, itk::ThreadIdType threadId) override;
/**
* Iterative call to the forward filter bank at each dimension.
* Used for the multiresolution case only.
*/
virtual void ThreadedGenerateDataAtDimensionN(unsigned int direction,
itk::ProgressReporter& reporter,
const OutputImageRegionType& outputRegionForThread, itk::ThreadIdType threadId);
private:
WaveletFilterBank(const Self &);
void operator =(const Self&);
unsigned int m_UpSampleFilterFactor;
unsigned int m_SubsampleImageFactor;
/** the easiest way to store internal images is to keep track of the splits
* at each direction. Then, std::vector< InternalImagesTabular > is a tab of
* size ImageDimension-1 and each InternalImagesTabular contains intermediate
* images. Internal images are used for multiresolution case only.
*/
typedef std::vector<OutputImagePointerType> InternalImagesTabular;
std::vector<InternalImagesTabular> m_InternalImages;
}; // end of class
} // end of namespace otb
#ifndef OTB_MANUAL_INSTANTIATION
#include "otbWaveletFilterBank.txx"
#endif
#endif
|