File: otbOGRLayerStreamStitchingFilter.txx

package info (click to toggle)
otb 6.6.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 47,068 kB
  • sloc: cpp: 316,755; ansic: 4,474; sh: 1,610; python: 497; perl: 92; makefile: 82; java: 72
file content (415 lines) | stat: -rw-r--r-- 15,004 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
/*
 * Copyright (C) 2005-2017 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbOGRLayerStreamStitchingFilter_txx
#define otbOGRLayerStreamStitchingFilter_txx

#include "otbOGRLayerStreamStitchingFilter.h"
#include "itkContinuousIndex.h"

#include <iomanip>
#include "ogrsf_frmts.h"
#include <set>

namespace otb
{

template<class TImage>
OGRLayerStreamStitchingFilter<TImage>
::OGRLayerStreamStitchingFilter() : m_Radius(2), m_OGRLayer(ITK_NULLPTR, false)
{
   m_StreamSize.Fill(0);
}

template <class TInputImage>
void
OGRLayerStreamStitchingFilter<TInputImage>
::SetInput(const InputImageType *input)
{
  this->Superclass::SetNthInput(0, const_cast<InputImageType *>(input));
}

template <class TInputImage>
const typename OGRLayerStreamStitchingFilter<TInputImage>
::InputImageType *
OGRLayerStreamStitchingFilter<TInputImage>
::GetInput(void)
{
  if (this->GetNumberOfInputs() < 1)
    {
    return ITK_NULLPTR;
    }

  return static_cast<const InputImageType *>(this->Superclass::GetInput(0));
}

template<class TInputImage>
void
OGRLayerStreamStitchingFilter<TInputImage>
::SetOGRLayer( const OGRLayerType& ogrLayer )
{
  m_OGRLayer = ogrLayer;
  this->Modified();
}

template<class TInputImage>
const typename OGRLayerStreamStitchingFilter<TInputImage>::OGRLayerType &
OGRLayerStreamStitchingFilter<TInputImage>
::GetOGRLayer( void ) const
{
   return m_OGRLayer;
}

template<class TInputImage>
double
OGRLayerStreamStitchingFilter<TInputImage>
::GetLengthOGRGeometryCollection( OGRGeometryCollection * intersection )
{
  double dfLength = 0.0;
  for( int iGeom = 0; iGeom < intersection->getNumGeometries(); iGeom++ )
    {
      OGRGeometry* geom = intersection->getGeometryRef(iGeom);
      switch( wkbFlatten(geom->getGeometryType()) )
       {
       case wkbLinearRing:
       case wkbLineString:
         dfLength += ((OGRCurve *) geom)->get_Length();
         break;
       case wkbGeometryCollection:
         dfLength += GetLengthOGRGeometryCollection(dynamic_cast<OGRGeometryCollection *> (geom));
         break;
       default:
         break;
       }
    }
  return dfLength;
}
template<class TInputImage>
void
OGRLayerStreamStitchingFilter<TInputImage>
::ProcessStreamingLine( bool line, itk::ProgressReporter & progress)
{
   typename InputImageType::ConstPointer inputImage = this->GetInput();

   //compute the number of stream division in row and column
   SizeType imageSize = this->GetInput()->GetLargestPossibleRegion().GetSize();
   unsigned int nbRowStream = static_cast<unsigned int>(imageSize[1] / m_StreamSize[1] + 1);
   unsigned int nbColStream = static_cast<unsigned int>(imageSize[0] / m_StreamSize[0] + 1);

   /*unsigned long startReporter;
   unsigned long stopReporter;
   if (!line)
   {
     startReporter = 0;
     stopReporter = 50;
   }
   else
   {
     startReporter = 50;
     stopReporter = 100;
   }
   itk::ProgressReporter progress(this,0,2*nbRowStream*nbColStream,100,startReporter); */

   for(unsigned int x=1; x<=nbColStream; x++)
   {
   OGRErr errStart = m_OGRLayer.ogr().StartTransaction();

   if (errStart != OGRERR_NONE)
     {
     itkExceptionMacro(<< "Unable to start transaction for OGR layer " << m_OGRLayer.ogr().GetName() << ".");
     }

      for(unsigned int y=1; y<=nbRowStream; y++)
      {

        //Compute Stream line
        OGRLineString streamLine;
        itk::ContinuousIndex<double,2> startIndex;
        itk::ContinuousIndex<double,2> endIndex;
        if(!line)
        {
          // Treat vertical stream line
          startIndex[0] = static_cast<double>(m_StreamSize[0] * x) - 0.5;
          startIndex[1] = static_cast<double>(m_StreamSize[1] * (y-1)) - 0.5;
          endIndex = startIndex;
          endIndex[1] += static_cast<double>(m_StreamSize[1]);
        }
        else
        {  // Treat horizontal stream line
          startIndex[0] = static_cast<double>(m_StreamSize[0] * (x-1)) - 0.5;
          startIndex[1] = static_cast<double>(m_StreamSize[1] * y) - 0.5;
          endIndex = startIndex;
          endIndex[0] += static_cast<double>(m_StreamSize[0]);
        }
        OriginType  startPoint;
        inputImage->TransformContinuousIndexToPhysicalPoint(startIndex, startPoint);
        OriginType  endPoint;
        inputImage->TransformContinuousIndexToPhysicalPoint(endIndex, endPoint);
        streamLine.addPoint(startPoint[0], startPoint[1]);
        streamLine.addPoint(endPoint[0], endPoint[1]);


        //First we get all the feature that intersect the streaming line of the Upper/left stream
         std::vector<FeatureStruct> upperStreamFeatureList;
         upperStreamFeatureList.clear();
         IndexType  UpperLeftCorner;
         IndexType  LowerRightCorner;

         if(!line)
         {
            // Treat Row stream
            //Compute the spatial filter of the upper stream
            UpperLeftCorner[0] = x*m_StreamSize[0] - 1 - m_Radius;
            UpperLeftCorner[1] = m_StreamSize[1]*(y-1);

            LowerRightCorner[0] = m_StreamSize[0]*x - 1;
            LowerRightCorner[1] = m_StreamSize[1]*y - 1;
         }
         else
         {  // Treat Column stream
            //Compute the spatial filter of the left stream
            UpperLeftCorner[0] = (x-1)*m_StreamSize[0];
            UpperLeftCorner[1] = m_StreamSize[1]*y - 1 - m_Radius;

            LowerRightCorner[0] = m_StreamSize[0]*x - 1;
            LowerRightCorner[1] = m_StreamSize[1]*y - 1; //-1 to stop just before stream line
         }

         OriginType  ulCorner;
         inputImage->TransformIndexToPhysicalPoint(UpperLeftCorner, ulCorner);
         OriginType  lrCorner;
         inputImage->TransformIndexToPhysicalPoint(LowerRightCorner, lrCorner);

         m_OGRLayer.SetSpatialFilterRect(ulCorner[0],lrCorner[1],lrCorner[0],ulCorner[1]);

        std::set<unsigned int> upperFIDs;
         OGRLayerType::const_iterator featIt = m_OGRLayer.begin();
         for(; featIt!=m_OGRLayer.end(); ++featIt)
         {
            FeatureStruct s(m_OGRLayer.GetLayerDefn());
            s.feat = *featIt;
            s.fusioned = false;
            upperStreamFeatureList.push_back(s);
           upperFIDs.insert((*featIt).GetFID());
         }

         //Do the same thing for the lower/right stream
         std::vector<FeatureStruct> lowerStreamFeatureList;
         lowerStreamFeatureList.clear();

         if(!line)
         {
            //Compute the spatial filter of the lower stream
            UpperLeftCorner[0] = x*m_StreamSize[0];
            UpperLeftCorner[1] = m_StreamSize[1]*(y-1);

            LowerRightCorner[0] = m_StreamSize[0]*x + m_Radius;
            LowerRightCorner[1] = m_StreamSize[1]*y - 1;
         }
         else
         {
            //Compute the spatial filter of the right stream
            UpperLeftCorner[0] = (x-1)*m_StreamSize[0];
            UpperLeftCorner[1] = m_StreamSize[1]*y;

            LowerRightCorner[0] = m_StreamSize[0]*x - 1;
            LowerRightCorner[1] = m_StreamSize[1]*y + m_Radius;
         }

         inputImage->TransformIndexToPhysicalPoint(UpperLeftCorner, ulCorner);
         inputImage->TransformIndexToPhysicalPoint(LowerRightCorner, lrCorner);

         m_OGRLayer.SetSpatialFilterRect(ulCorner[0],lrCorner[1],lrCorner[0],ulCorner[1]);

         for(featIt = m_OGRLayer.begin(); featIt!=m_OGRLayer.end(); ++featIt)
         {
            if(upperFIDs.find((*featIt).GetFID()) == upperFIDs.end())
           {
             FeatureStruct s(m_OGRLayer.GetLayerDefn());
             s.feat = *featIt;
             s.fusioned = false;
             lowerStreamFeatureList.push_back(s);
           }
         }

         unsigned int nbUpperPolygons = upperStreamFeatureList.size();
         unsigned int nbLowerPolygons = lowerStreamFeatureList.size();
         std::vector<FusionStruct> fusionList;
         fusionList.clear();
         for(unsigned int u=0; u<nbUpperPolygons; u++)
         {
            for(unsigned int l=0; l<nbLowerPolygons; l++)
            {
               FeatureStruct upper = upperStreamFeatureList[u];
               FeatureStruct lower = lowerStreamFeatureList[l];
              if (!(upper.feat == lower.feat))
              {
                if (ogr::Intersects(*upper.feat.GetGeometry(), *lower.feat.GetGeometry()))
                {
                    ogr::UniqueGeometryPtr intersection2 = ogr::Intersection(*upper.feat.GetGeometry(),*lower.feat.GetGeometry());
                    ogr::UniqueGeometryPtr intersection = ogr::Intersection(*intersection2, streamLine);
                    //ogr::UniqueGeometryPtr intersection = ogr::Intersection(*upper.feat.GetGeometry(),*lower.feat.GetGeometry());
                    if (intersection)
                    {
                     FusionStruct fusion;
                     fusion.indStream1 = u;
                     fusion.indStream2 = l;
                     fusion.overlap = 0.;

                     if(intersection->getGeometryType() == wkbPolygon)
                     {
                         fusion.overlap = dynamic_cast<OGRPolygon *>(intersection.get())->get_Area();
                     }
                     else if(intersection->getGeometryType() == wkbMultiPolygon)
                     {
                         fusion.overlap = dynamic_cast<OGRMultiPolygon *>(intersection.get())->get_Area();
                     }
                     else if(intersection->getGeometryType() == wkbGeometryCollection)
                     {
                         fusion.overlap = dynamic_cast<OGRGeometryCollection *>(intersection.get())->get_Area();
                     }
                     else if(intersection->getGeometryType() == wkbLineString)
                     {
                         fusion.overlap = dynamic_cast<OGRLineString *>(intersection.get())->get_Length();
                     }
                     else if (intersection->getGeometryType() == wkbMultiLineString)
                     {
                         #if(GDAL_VERSION_NUM < 1800)
                     fusion.overlap = GetLengthOGRGeometryCollection(dynamic_cast<OGRGeometryCollection *> (intersection.get()));
                         #else
                     fusion.overlap = dynamic_cast<OGRMultiLineString *>(intersection.get())->get_Length();
                         #endif
                    }

                     /** -Wunused-variable
                     long upperFID = upper.feat.GetFID();
                     long lowerFID = lower.feat.GetFID();
                     **/
                     fusionList.push_back(fusion);
                    }
                }
              }
            }
         }
         unsigned int fusionListSize = fusionList.size();
         std::sort(fusionList.begin(),fusionList.end(),SortFeature);
         for(unsigned int i=0; i<fusionListSize; i++)
         {
            FeatureStruct upper = upperStreamFeatureList.at(fusionList.at(i).indStream1);
            FeatureStruct lower = lowerStreamFeatureList.at(fusionList.at(i).indStream2);
            if( !upper.fusioned && !lower.fusioned)
            {
              upperStreamFeatureList[fusionList[i].indStream1].fusioned = true;
               lowerStreamFeatureList[fusionList[i].indStream2].fusioned = true;
               ogr::UniqueGeometryPtr fusionPolygon = ogr::Union(*upper.feat.GetGeometry(),*lower.feat.GetGeometry());
               OGRFeatureType fusionFeature(m_OGRLayer.GetLayerDefn());
               fusionFeature.SetGeometry( fusionPolygon.get() );

               ogr::Field field = upper.feat[0];
               try
                 {
                 #ifdef OTB_USE_GDAL_20
                 // In this case, the feature id can be either
                 // OFTInteger64 or OFTInteger
                 switch(field.GetType())
                   {
                   case OFTInteger64:
                   {
                   fusionFeature[0].SetValue(field.GetValue<GIntBig>());
                   break;
                   }
                   default:
                   {
                   fusionFeature[0].SetValue(field.GetValue<int>());
                   }
                   }
                 #else
                 // Only OFTInteger supported in this case
                 fusionFeature[0].SetValue(field.GetValue<int>());
                 #endif
                 m_OGRLayer.CreateFeature(fusionFeature);
                 m_OGRLayer.DeleteFeature(lower.feat.GetFID());
                 m_OGRLayer.DeleteFeature(upper.feat.GetFID());
                 }
               catch(itk::ExceptionObject& err)
                 {
                   otbWarningMacro(<<"An exception was caught during fusion: "<<err);
                 }
            }
         }

         // Update progress
         progress.CompletedPixel();

      } //end for x

      if(m_OGRLayer.ogr().TestCapability("Transactions"))
        {

        OGRErr errCommitX = m_OGRLayer.ogr().CommitTransaction();
        if (errCommitX != OGRERR_NONE)
          {
          itkExceptionMacro(<< "Unable to commit transaction for OGR layer " << m_OGRLayer.ogr().GetName() << ".");
          }
        }
   } //end for y

   if(m_OGRLayer.ogr().TestCapability("Transactions"))
     {
     const OGRErr errCommitY = m_OGRLayer.ogr().CommitTransaction();

     if (errCommitY != OGRERR_NONE)
       {
       itkWarningMacro(<< "Unable to commit transaction for OGR layer " << m_OGRLayer.ogr().GetName() << ". Gdal error code " << errCommitY << "." << std::endl);
       }
     }
}
template<class TImage>
void
OGRLayerStreamStitchingFilter<TImage>
::GenerateData(void)
{
   if(!m_OGRLayer)
   {
      itkExceptionMacro(<<"Input OGR layer is null!");
   }

   this->InvokeEvent(itk::StartEvent());

   typename InputImageType::ConstPointer inputImage = this->GetInput();

  //compute the number of stream division in row and column
   SizeType imageSize = this->GetInput()->GetLargestPossibleRegion().GetSize();
   unsigned int nbRowStream = static_cast<unsigned int>(imageSize[1] / m_StreamSize[1] + 1);
   unsigned int nbColStream = static_cast<unsigned int>(imageSize[0] / m_StreamSize[0] + 1);

   itk::ProgressReporter progress(this,0,2*nbRowStream*nbColStream,100,0);
   //Process column
   this->ProcessStreamingLine(false, progress);
   //Process row
   this->ProcessStreamingLine(true, progress);

   this->InvokeEvent(itk::EndEvent());
}


} // end namespace otb

#endif