File: CorrelChDet.cxx

package info (click to toggle)
otb 7.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,005,476 kB
  • sloc: cpp: 270,143; xml: 128,722; ansic: 4,367; sh: 1,768; python: 1,084; perl: 92; makefile: 72
file content (115 lines) | stat: -rw-r--r-- 4,520 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
/*
 * Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbImage.h"
#include "itkShiftScaleImageFilter.h"
#include "otbCommandProgressUpdate.h"
#include "otbCorrelationChangeDetector.h"

/* Example usage:
./CorrelChDet Input/ERSBefore.png Input/ERSAfter.png Output/CorrChDet.tif 15
*/

int main(int argc, char* argv[])
{

  if (argc < 5)
  {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] << " inputImageFile1 inputImageFile2 "
              << "outputImageFile radius" << std::endl;
    return -1;
  }

  // Define the dimension of the images
  const unsigned int Dimension = 2;

  // We start by declaring the types for the two input images, the
  // change image and the image to be stored in a file for visualization.
  using InternalPixelType = float;
  using OutputPixelType   = unsigned char;
  using InputImageType1   = otb::Image<InternalPixelType, Dimension>;
  using InputImageType2   = otb::Image<InternalPixelType, Dimension>;
  using ChangeImageType   = otb::Image<InternalPixelType, Dimension>;
  using OutputImageType   = otb::Image<OutputPixelType, Dimension>;

  // We can now declare the types for the readers. Since the images
  // can be very large, we will force the pipeline to use
  // streaming. For this purpose, the file writer will be
  // streamed.
  using ReaderType1 = otb::ImageFileReader<InputImageType1>;
  using ReaderType2 = otb::ImageFileReader<InputImageType2>;
  using WriterType  = otb::ImageFileWriter<OutputImageType>;

  // The change detector will give a response which is normalized
  // between 0 and 1.
  // Before saving the image to a file in, for instance, PNG format, we will
  // rescale the results of the change detection in order to use all
  // the output pixel type range of values.
  using RescalerType = itk::ShiftScaleImageFilter<ChangeImageType, OutputImageType>;

  // The CorrelationChangeDetector is templated over
  // the types of the two input images and the type of the generated change
  // image.
  using FilterType = otb::CorrelationChangeDetector<InputImageType1, InputImageType2, ChangeImageType>;

  // The different elements of the pipeline can now be instantiated.
  ReaderType1::Pointer  reader1        = ReaderType1::New();
  ReaderType2::Pointer  reader2        = ReaderType2::New();
  WriterType::Pointer   writer         = WriterType::New();
  FilterType::Pointer   filter         = FilterType::New();
  RescalerType::Pointer rescaler       = RescalerType::New();
  const char*           inputFilename1 = argv[1];
  const char*           inputFilename2 = argv[2];
  const char*           outputFilename = argv[3];

  // We set the parameters of the different elements of the pipeline.
  reader1->SetFileName(inputFilename1);
  reader2->SetFileName(inputFilename2);
  writer->SetFileName(outputFilename);

  float scale = itk::NumericTraits<OutputPixelType>::max();
  rescaler->SetScale(scale);

  // The only parameter for this change detector is the radius of
  // the window used for computing the correlation coefficient.
  filter->SetRadius(atoi(argv[4]));

  // We build the pipeline by plugging all the elements together.
  filter->SetInput1(reader1->GetOutput());
  filter->SetInput2(reader2->GetOutput());
  rescaler->SetInput(filter->GetOutput());
  writer->SetInput(rescaler->GetOutput());

  // Since the processing time of large images can be long, it is
  // interesting to monitor the evolution of the computation. In
  // order to do so, the change detectors can use the
  // command/observer design pattern. This is easily done by
  // attaching an observer to the filter.
  using CommandType = otb::CommandProgressUpdate<FilterType>;

  CommandType::Pointer observer = CommandType::New();
  filter->AddObserver(itk::ProgressEvent(), observer);

  writer->Update();
}