1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
/*
* Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "otbVectorImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbPrintableImageFilter.h"
/* Example usage:
./ICAExample Input/wv2_cannes_8bands.tif \
Output/FastICAOutput.tif \
Output/InverseFastICAOutput.tif \
Output/FastICA-input-pretty.png \
Output/FastICA-output-pretty.png \
Output/FastICA-invoutput-pretty.png \
8 \
20 \
1.
*/
// This example illustrates the use of the
// \doxygen{otb}{FastICAImageFilter}.
// This filter computes a Fast Independent Components Analysis transform.
//
// Like Principal Components Analysis, Independent Component Analysis
// \cite{jutten1991blind} computes a set of
// orthogonal linear combinations, but the criterion of Fast ICA is
// different: instead of maximizing variance, it tries to maximize
// statistical independence between components.
//
// In the Fast ICA algorithm \cite{hyvarinen1999fast},
// statistical independence is measured by evaluating non-Gaussianity
// of the components, and the maximization is done in an iterative way.
// The first step required to use this filter is to include its header file.
#include "otbFastICAImageFilter.h"
int main(int itkNotUsed(argc), char* argv[])
{
using PixelType = double;
const unsigned int Dimension = 2;
const char* inputFileName = argv[1];
const char* outputFilename = argv[2];
const char* outputInverseFilename = argv[3];
const unsigned int numberOfPrincipalComponentsRequired(atoi(argv[7]));
const char* inpretty = argv[4];
const char* outpretty = argv[5];
const char* invoutpretty = argv[6];
unsigned int numIterations = atoi(argv[8]);
double mu = atof(argv[9]);
// We start by defining the types for the images, the reader, and
// the writer. We choose to work with a \doxygen{otb}{VectorImage},
// since we will produce a multi-channel image (the independent
// components) from a multi-channel input image.
using ImageType = otb::VectorImage<PixelType, Dimension>;
using ReaderType = otb::ImageFileReader<ImageType>;
using WriterType = otb::ImageFileWriter<ImageType>;
// We instantiate now the image reader and we set the image file name.
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(inputFileName);
// We define the type for the filter. It is templated over the input
// and the output image types and also the transformation direction. The
// internal structure of this filter is a filter-to-filter like structure.
// We can now the instantiate the filter.
using FastICAFilterType = otb::FastICAImageFilter<ImageType, ImageType, otb::Transform::FORWARD>;
FastICAFilterType::Pointer FastICAfilter = FastICAFilterType::New();
// We then set the number of independent
// components required as output. We can choose to get less ICs than
// the number of input bands.
FastICAfilter->SetNumberOfPrincipalComponentsRequired(numberOfPrincipalComponentsRequired);
// We set the number of iterations of the ICA algorithm.
FastICAfilter->SetNumberOfIterations(numIterations);
// We also set the $\mu$ parameter.
FastICAfilter->SetMu(mu);
// We now instantiate the writer and set the file name for the
// output image.
WriterType::Pointer writer = WriterType::New();
writer->SetFileName(outputFilename);
// We finally plug the pipeline and trigger the ICA computation with
// the method \code{Update()} of the writer.
FastICAfilter->SetInput(reader->GetOutput());
writer->SetInput(FastICAfilter->GetOutput());
writer->Update();
// \doxygen{otb}{FastICAImageFilter} allows also to compute inverse
// transformation from ICA coefficients. In reverse mode, the
// covariance matrix or the transformation matrix
// (which may not be square) has to be given.
using InvFastICAFilterType = otb::FastICAImageFilter<ImageType, ImageType, otb::Transform::INVERSE>;
InvFastICAFilterType::Pointer invFilter = InvFastICAFilterType::New();
invFilter->SetMeanValues(FastICAfilter->GetMeanValues());
invFilter->SetStdDevValues(FastICAfilter->GetStdDevValues());
invFilter->SetTransformationMatrix(FastICAfilter->GetTransformationMatrix());
invFilter->SetPCATransformationMatrix(FastICAfilter->GetPCATransformationMatrix());
invFilter->SetInput(FastICAfilter->GetOutput());
WriterType::Pointer invWriter = WriterType::New();
invWriter->SetFileName(outputInverseFilename);
invWriter->SetInput(invFilter->GetOutput());
invWriter->Update();
// Figure~\ref{fig:FastICA_FILTER} shows the result of applying forward
// and reverse FastICA transformation to a 8 bands Worldview2 image.
// \begin{figure}
// \center
// \includegraphics[width=0.32\textwidth]{FastICA-input-pretty.eps}
// \includegraphics[width=0.32\textwidth]{FastICA-output-pretty.eps}
// \includegraphics[width=0.32\textwidth]{FastICA-invoutput-pretty.eps}
// \itkcaption[PCA Filter (forward trasnformation)]{Result of applying the
// \doxygen{otb}{FastICAImageFilter} to an image. From left
// to right:
// original image, color composition with first three independent
// components and output of the
// inverse mode (the input RGB image).}
// \label{fig:FastICA_FILTER}
// \end{figure}
// This is for rendering in software guide
using PrintFilterType = otb::PrintableImageFilter<ImageType, ImageType>;
using VisuImageType = PrintFilterType::OutputImageType;
using VisuWriterType = otb::ImageFileWriter<VisuImageType>;
PrintFilterType::Pointer inputPrintFilter = PrintFilterType::New();
PrintFilterType::Pointer outputPrintFilter = PrintFilterType::New();
PrintFilterType::Pointer invertOutputPrintFilter = PrintFilterType::New();
VisuWriterType::Pointer inputVisuWriter = VisuWriterType::New();
VisuWriterType::Pointer outputVisuWriter = VisuWriterType::New();
VisuWriterType::Pointer invertOutputVisuWriter = VisuWriterType::New();
inputPrintFilter->SetInput(reader->GetOutput());
inputPrintFilter->SetChannel(5);
inputPrintFilter->SetChannel(3);
inputPrintFilter->SetChannel(2);
outputPrintFilter->SetInput(FastICAfilter->GetOutput());
outputPrintFilter->SetChannel(1);
outputPrintFilter->SetChannel(2);
outputPrintFilter->SetChannel(3);
invertOutputPrintFilter->SetInput(invFilter->GetOutput());
invertOutputPrintFilter->SetChannel(5);
invertOutputPrintFilter->SetChannel(3);
invertOutputPrintFilter->SetChannel(2);
inputVisuWriter->SetInput(inputPrintFilter->GetOutput());
outputVisuWriter->SetInput(outputPrintFilter->GetOutput());
invertOutputVisuWriter->SetInput(invertOutputPrintFilter->GetOutput());
inputVisuWriter->SetFileName(inpretty);
outputVisuWriter->SetFileName(outpretty);
invertOutputVisuWriter->SetFileName(invoutpretty);
inputVisuWriter->Update();
outputVisuWriter->Update();
invertOutputVisuWriter->Update();
return EXIT_SUCCESS;
}
|