File: MNFExample.cxx

package info (click to toggle)
otb 7.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,005,476 kB
  • sloc: cpp: 270,143; xml: 128,722; ansic: 4,367; sh: 1,768; python: 1,084; perl: 92; makefile: 72
file content (222 lines) | stat: -rw-r--r-- 8,739 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
/*
 * Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "otbVectorImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbPrintableImageFilter.h"

/* Example usage:
./MNFExample Input/wv2_cannes_8bands.tif \
             Output/MNFOutput.tif \
             Output/InverseMNFOutput.tif \
             Output/MNF-input-pretty.png \
             Output/MNF-output-pretty.png \
             Output/MNF-invoutput-pretty.png \
             8 \
             1 \
             1
*/


// This example illustrates the use of the
// \doxygen{otb}{MNFImageFilter}.  This filter computes a Maximum
// Noise Fraction transform \cite{green1988transformation} using an
// efficient method based on the inner product in order to compute the
// covariance matrix.
//
// The Maximum Noise Fraction transform is a sequence of two Principal
// Component Analysis transforms. The first transform is based on an
// estimated covariance matrix of the noise, and intends to whiten the
// input image (noise with unit variance and no correlation between
// bands).
//
// The second Principal Component Analysis is then applied to the
// noise-whitened image, giving the Maximum Noise Fraction transform.
//
// In this implementation, noise is estimated from a local window.
//
// The first step required to use this filter is to include its header file.

#include "otbMNFImageFilter.h"

// We also need to include the header of the noise filter.
//
// SoftwareGuide : EndLatex

#include "otbLocalActivityVectorImageFilter.h"


int main(int itkNotUsed(argc), char* argv[])
{
  using PixelType                          = double;
  const unsigned int Dimension             = 2;
  const char*        inputFileName         = argv[1];
  const char*        outputFilename        = argv[2];
  const char*        outputInverseFilename = argv[3];
  const unsigned int numberOfPrincipalComponentsRequired(atoi(argv[7]));
  const char*        inpretty      = argv[4];
  const char*        outpretty     = argv[5];
  const char*        invoutpretty  = argv[6];
  unsigned int       vradius       = atoi(argv[8]);
  bool               normalization = atoi(argv[9]);

  // We start by defining the types for the images, the reader, and
  // the writer. We choose to work with a \doxygen{otb}{VectorImage},
  // since we will produce a multi-channel image (the principal
  // components) from a multi-channel input image.

  using ImageType  = otb::VectorImage<PixelType, Dimension>;
  using ReaderType = otb::ImageFileReader<ImageType>;
  using WriterType = otb::ImageFileWriter<ImageType>;
  // We instantiate now the image reader and we set the image file name.

  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName(inputFileName);

  // In contrast with standard Principal Component Analysis, MNF
  // needs an estimation of the noise correlation matrix
  // in the dataset prior to transformation.
  //
  // A classical approach is to use spatial gradient images
  // and infer the noise correlation matrix from it.
  // The method of noise estimation can be customized
  // by templating the \doxygen{otb}{MNFImageFilter}
  // with the desired noise estimation method.
  //
  // In this implementation, noise is estimated from a local window.
  // We define the type of the noise filter.

  // SoftwareGuide : BeginCodeSnippet
  using NoiseFilterType = otb::LocalActivityVectorImageFilter<ImageType, ImageType>;
  // SoftwareGuide : EndCodeSnippet


  // We define the type for the filter. It is templated over the input
  // and the output image types and also the transformation direction. The
  // internal structure of this filter is a filter-to-filter like structure.
  // We can now the instantiate the filter.

  using MNFFilterType              = otb::MNFImageFilter<ImageType, ImageType, NoiseFilterType, otb::Transform::FORWARD>;
  MNFFilterType::Pointer MNFfilter = MNFFilterType::New();

  // We then set the number of principal
  // components required as output. We can choose to get less PCs than
  // the number of input bands.

  MNFfilter->SetNumberOfPrincipalComponentsRequired(numberOfPrincipalComponentsRequired);

  // We set the radius of the sliding window for noise estimation.

  NoiseFilterType::RadiusType radius = {{vradius, vradius}};
  MNFfilter->GetNoiseImageFilter()->SetRadius(radius);

  // Last, we can activate normalisation.

  MNFfilter->SetUseNormalization(normalization);

  // We now instantiate the writer and set the file name for the
  // output image.

  WriterType::Pointer writer = WriterType::New();
  writer->SetFileName(outputFilename);
  // We finally plug the pipeline and trigger the MNF computation with
  // the method \code{Update()} of the writer.

  MNFfilter->SetInput(reader->GetOutput());
  writer->SetInput(MNFfilter->GetOutput());

  writer->Update();

  // \doxygen{otb}{MNFImageFilter} allows also to compute inverse
  // transformation from MNF coefficients. In reverse mode, the
  // covariance matrix or the transformation matrix
  // (which may not be square) has to be given.

  using InvMNFFilterType              = otb::MNFImageFilter<ImageType, ImageType, NoiseFilterType, otb::Transform::INVERSE>;
  InvMNFFilterType::Pointer invFilter = InvMNFFilterType::New();

  invFilter->SetMeanValues(MNFfilter->GetMeanValues());
  if (normalization)
    invFilter->SetStdDevValues(MNFfilter->GetStdDevValues());
  invFilter->SetTransformationMatrix(MNFfilter->GetTransformationMatrix());
  invFilter->SetInput(MNFfilter->GetOutput());

  WriterType::Pointer invWriter = WriterType::New();
  invWriter->SetFileName(outputInverseFilename);
  invWriter->SetInput(invFilter->GetOutput());

  invWriter->Update();

  // Figure~\ref{fig:MNF_FILTER} shows the result of applying forward
  // and reverse MNF transformation to a 8 bands Worldview2 image.
  // \begin{figure}
  // \center
  // \includegraphics[width=0.32\textwidth]{MNF-input-pretty.eps}
  // \includegraphics[width=0.32\textwidth]{MNF-output-pretty.eps}
  // \includegraphics[width=0.32\textwidth]{MNF-invoutput-pretty.eps}
  // \itkcaption[PCA Filter (forward trasnformation)]{Result of applying the
  // \doxygen{otb}{MNFImageFilter} to an image. From left
  // to right:
  // original image, color composition with first three principal
  // components and output of the
  // inverse mode (the input RGB image).}
  // \label{fig:MNF_FILTER}
  // \end{figure}

  // This is for rendering in software guide
  using PrintFilterType = otb::PrintableImageFilter<ImageType, ImageType>;
  using VisuImageType   = PrintFilterType::OutputImageType;
  using VisuWriterType  = otb::ImageFileWriter<VisuImageType>;

  PrintFilterType::Pointer inputPrintFilter        = PrintFilterType::New();
  PrintFilterType::Pointer outputPrintFilter       = PrintFilterType::New();
  PrintFilterType::Pointer invertOutputPrintFilter = PrintFilterType::New();
  VisuWriterType::Pointer  inputVisuWriter         = VisuWriterType::New();
  VisuWriterType::Pointer  outputVisuWriter        = VisuWriterType::New();
  VisuWriterType::Pointer  invertOutputVisuWriter  = VisuWriterType::New();

  inputPrintFilter->SetInput(reader->GetOutput());
  inputPrintFilter->SetChannel(5);
  inputPrintFilter->SetChannel(3);
  inputPrintFilter->SetChannel(2);
  outputPrintFilter->SetInput(MNFfilter->GetOutput());
  outputPrintFilter->SetChannel(1);
  outputPrintFilter->SetChannel(2);
  outputPrintFilter->SetChannel(3);
  invertOutputPrintFilter->SetInput(invFilter->GetOutput());
  invertOutputPrintFilter->SetChannel(5);
  invertOutputPrintFilter->SetChannel(3);
  invertOutputPrintFilter->SetChannel(2);

  inputVisuWriter->SetInput(inputPrintFilter->GetOutput());
  outputVisuWriter->SetInput(outputPrintFilter->GetOutput());
  invertOutputVisuWriter->SetInput(invertOutputPrintFilter->GetOutput());

  inputVisuWriter->SetFileName(inpretty);
  outputVisuWriter->SetFileName(outpretty);
  invertOutputVisuWriter->SetFileName(invoutpretty);

  inputVisuWriter->Update();
  outputVisuWriter->Update();
  invertOutputVisuWriter->Update();

  return EXIT_SUCCESS;
}