1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
/*
* Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "otbVectorImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbPrintableImageFilter.h"
/* Example usage:
./MaximumAutocorrelationFactor Input/wv2_cannes_8bands.tif Output/MAFOutput.tif Output/maf-input.png Output/maf-output.png
*/
// This example illustrates the class
// \doxygen{otb}{MaximumAutocorrelationFactorImageFilter}, which
// performs a Maximum Autocorrelation Factor transform \cite{nielsen2011kernel}. Like
// PCA, MAF tries to find a set of orthogonal linear transform, but
// the criterion to maximize is the spatial auto-correlation rather than the
// variance.
//
// Auto-correlation is the correlation between the component and a
// unitary shifted version of the component.
//
// Please note that the inverse transform is not implemented yet.
//
// We start by including the corresponding header file.
#include "otbMaximumAutocorrelationFactorImageFilter.h"
int main(int itkNotUsed(argc), char* argv[])
{
char* infname = argv[1];
char* outfname = argv[2];
char* inpretty = argv[3];
char* outpretty = argv[4];
// We then define the types for the input image and the
// output image.
using InputImageType = otb::VectorImage<unsigned short, 2>;
using OutputImageType = otb::VectorImage<double, 2>;
// We can now declare the types for the reader. Since the images
// can be very large, we will force the pipeline to use
// streaming. For this purpose, the file writer will be
// streamed. This is achieved by using the
// \doxygen{otb}{ImageFileWriter} class.
using ReaderType = otb::ImageFileReader<InputImageType>;
using WriterType = otb::ImageFileWriter<OutputImageType>;
// The \doxygen{otb}{MultivariateAlterationDetectorImageFilter} is templated over
// the type of the input images and the type of the generated change
// image.
using FilterType = otb::MaximumAutocorrelationFactorImageFilter<InputImageType, OutputImageType>;
// The different elements of the pipeline can now be instantiated.
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
FilterType::Pointer filter = FilterType::New();
// We set the parameters of the different elements of the pipeline.
reader->SetFileName(infname);
writer->SetFileName(outfname);
// We build the pipeline by plugging all the elements together.
filter->SetInput(reader->GetOutput());
writer->SetInput(filter->GetOutput());
// And then we can trigger the pipeline update, as usual.
writer->Update();
// This is for rendering in software guide
using InputPrintFilterType = otb::PrintableImageFilter<InputImageType, InputImageType>;
using OutputPrintFilterType = otb::PrintableImageFilter<OutputImageType, OutputImageType>;
using VisuImageType = InputPrintFilterType::OutputImageType;
using VisuWriterType = otb::ImageFileWriter<VisuImageType>;
InputPrintFilterType::Pointer inputPrintFilter = InputPrintFilterType::New();
OutputPrintFilterType::Pointer outputPrintFilter = OutputPrintFilterType::New();
VisuWriterType::Pointer inputVisuWriter = VisuWriterType::New();
VisuWriterType::Pointer outputVisuWriter = VisuWriterType::New();
inputPrintFilter->SetInput(reader->GetOutput());
inputPrintFilter->SetChannel(5);
inputPrintFilter->SetChannel(3);
inputPrintFilter->SetChannel(2);
outputPrintFilter->SetInput(filter->GetOutput());
outputPrintFilter->SetChannel(1);
outputPrintFilter->SetChannel(2);
outputPrintFilter->SetChannel(3);
inputVisuWriter->SetInput(inputPrintFilter->GetOutput());
outputVisuWriter->SetInput(outputPrintFilter->GetOutput());
inputVisuWriter->SetFileName(inpretty);
outputVisuWriter->SetFileName(outpretty);
inputVisuWriter->Update();
outputVisuWriter->Update();
// Figure \ref{fig:MAFFIG} shows the
// results of Maximum Autocorrelation Factor applied to an 8 bands
// Worldview2 image.
// \begin{figure}
// \center \includegraphics[width=0.32\textwidth]{maf-input.eps}
// \includegraphics[width=0.32\textwidth]{maf-output.eps}
// \itkcaption[Maximum Autocorrelation Factor results]{Results of the
// Maximum Autocorrelation Factor algorithm applied to a 8 bands
// Worldview2 image (3 first components).} \label{fig:MAFFIG}
// \end{figure}
return EXIT_SUCCESS;
}
|