1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
/*
* Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// The composite filter we will build combines three filters: a gradient
// magnitude operator, which will calculate the first-order derivative of
// the image; a thresholding step to select edges over a given strength;
// and finally a rescaling filter, to ensure the resulting image data is
// visible by scaling the intensity to the full spectrum of the output
// image type.
//
// Since this filter takes an image and produces another image (of
// identical type), we will specialize the ImageToImageFilter:
// Next we include headers for the component filters:
#include "itkUnaryFunctorImageFilter.h"
#include "itkGradientMagnitudeImageFilter.h"
#include "itkThresholdImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkNumericTraits.h"
#include "otbImage.h"
// Now we can declare the filter itself. It is within the OTB namespace,
// and we decide to make it use the same image type for both input and
// output, thus the template declaration needs only one parameter.
// Deriving from \code{ImageToImageFilter} provides default behavior for
// several important aspects, notably allocating the output image (and
// making it the same dimensions as the input).
namespace otb
{
template <class TImageType>
class ITK_EXPORT CompositeExampleImageFilter : public itk::ImageToImageFilter<TImageType, TImageType>
{
public:
// Next we have the standard declarations, used for object creation with
// the object factory:
using Self = CompositeExampleImageFilter<TImageType>;
using Superclass = itk::ImageToImageFilter<TImageType, TImageType>;
using Pointer = itk::SmartPointer<Self>;
using ConstPointer = itk::SmartPointer<const Self>;
/** Method for creation through object factory */
itkNewMacro(Self);
/** Run-time type information */
itkTypeMacro(CompositeExampleImageFilter, itk::ImageToImageFilter);
/** Display */
void PrintSelf(std::ostream& os, itk::Indent indent) const override;
// Here we declare an alias (to save typing) for the image's pixel type,
// which determines the type of the threshold value. We then use the
// convenience macros to define the Get and Set methods for this parameter.
using PixelType = typename TImageType::PixelType;
itkGetMacro(Threshold, PixelType);
itkSetMacro(Threshold, PixelType);
protected:
CompositeExampleImageFilter();
// Now we can declare the component filter types, templated over the
// enclosing image type:
protected:
using ThresholdType = itk::ThresholdImageFilter<TImageType>;
using GradientType = itk::GradientMagnitudeImageFilter<TImageType, TImageType>;
using RescalerType = itk::RescaleIntensityImageFilter<TImageType, TImageType>;
void GenerateData() override;
private:
CompositeExampleImageFilter(Self&); // intentionally not implemented
void operator=(const Self&); // intentionally not implemented
// The component filters are declared as data members, all using the smart
// pointer types.
typename GradientType::Pointer m_GradientFilter;
typename ThresholdType::Pointer m_ThresholdFilter;
typename RescalerType::Pointer m_RescaleFilter;
PixelType m_Threshold;
};
} /* namespace otb */
// The constructor sets up the pipeline, which involves creating the
// stages, connecting them together, and setting default parameters.
namespace otb
{
template <class TImageType>
CompositeExampleImageFilter<TImageType>::CompositeExampleImageFilter()
{
m_GradientFilter = GradientType::New();
m_ThresholdFilter = ThresholdType::New();
m_RescaleFilter = RescalerType::New();
m_ThresholdFilter->SetInput(m_GradientFilter->GetOutput());
m_RescaleFilter->SetInput(m_ThresholdFilter->GetOutput());
m_Threshold = 1;
m_RescaleFilter->SetOutputMinimum(itk::NumericTraits<PixelType>::NonpositiveMin());
m_RescaleFilter->SetOutputMaximum(itk::NumericTraits<PixelType>::max());
}
// The \code{GenerateData()} is where the composite magic happens. First,
// we connect the first component filter to the inputs of the composite
// filter (the actual input, supplied by the upstream stage). Then we
// graft the output of the last stage onto the output of the composite,
// which ensures the filter regions are updated. We force the composite
// pipeline to be processed by calling \code{Update()} on the final stage,
// then graft the output back onto the output of the enclosing filter, so
// it has the result available to the downstream filter.
template <class TImageType>
void CompositeExampleImageFilter<TImageType>::GenerateData()
{
m_GradientFilter->SetInput(this->GetInput());
m_ThresholdFilter->ThresholdBelow(this->m_Threshold);
m_RescaleFilter->GraftOutput(this->GetOutput());
m_RescaleFilter->Update();
this->GraftOutput(m_RescaleFilter->GetOutput());
}
// Finally we define the \code{PrintSelf} method, which (by convention)
// prints the filter parameters. Note how it invokes the superclass to
// print itself first, and also how the indentation prefixes each line.
//
template <class TImageType>
void CompositeExampleImageFilter<TImageType>::PrintSelf(std::ostream& os, itk::Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "Threshold:" << this->m_Threshold << std::endl;
}
} /* end namespace otb */
// It is important to note that in the above example, none of the internal
// details of the pipeline were exposed to users of the class. The interface
// consisted of the Threshold parameter (which happened to change the value in
// the component filter) and the regular ImageToImageFilter interface. This
// example pipeline is illustrated in
// Figure~\ref{fig:CompositeExamplePipeline}.
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
int main(int argc, char* argv[])
{
if (argc < 3)
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImageFile outputImageFile" << std::endl;
return EXIT_FAILURE;
}
using ImageType = otb::Image<short, 2>;
using ReaderType = otb::ImageFileReader<ImageType>;
using WriterType = otb::ImageFileWriter<ImageType>;
using FilterType = otb::CompositeExampleImageFilter<ImageType>;
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
FilterType::Pointer filter = FilterType::New();
reader->SetFileName(argv[1]);
filter->SetInput(reader->GetOutput());
filter->SetThreshold(20);
writer->SetInput(filter->GetOutput());
writer->SetFileName(argv[2]);
try
{
writer->Update();
}
catch (itk::ExceptionObject& e)
{
std::cerr << "Error: " << e << std::endl;
}
return EXIT_SUCCESS;
}
|