1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
/*
* Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Example usage:
./DanielssonDistanceMapImageFilter Input/FivePoints.png Output/DanielssonDistanceMapImageFilterOutput1.png Output/DanielssonDistanceMapImageFilterOutput2.png
*/
// This example illustrates the use of the
// \doxygen{itk}{DanielssonDistanceMapImageFilter}. This filter generates a
// distance map from the input image using the algorithm developed by
// Danielsson \cite{Danielsson1980}. As secondary outputs, a Voronoi
// partition of the input elements is produced, as well as a vector image
// with the components of the distance vector to the closest point. The input
// to the map is assumed to be a set of points on the input image. Each
// point/pixel is considered to be a separate entity even if they share the
// same gray level value.
//
// \index{itk::Danielsson\-Distance\-Map\-Image\-Filter!Instantiation}
// \index{itk::Danielsson\-Distance\-Map\-Image\-Filter!Header}
//
// The first step required to use this filter is to include its header file.
#include "itkConnectedComponentImageFilter.h"
#include "itkDanielssonDistanceMapImageFilter.h"
#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
int main(int argc, char* argv[])
{
if (argc < 4)
{
std::cerr << "Usage: " << argv[0];
std::cerr << " inputImageFile outputDistanceMapImageFile ";
std::cerr << " outputVoronoiMapImageFilter ";
std::cerr << std::endl;
return EXIT_FAILURE;
}
// Then we must decide what pixel types to use for the input and output
// images. Since the output will contain distances measured in pixels, the
// pixel type should be able to represent at least the width of the image,
// or said in $N-D$ terms, the maximum extension along all the dimensions.
// The input and output image types are now defined using their respective
// pixel type and dimension.
using InputPixelType = unsigned char;
using OutputPixelType = unsigned short;
using InputImageType = otb::Image<InputPixelType, 2>;
using OutputImageType = otb::Image<OutputPixelType, 2>;
// The filter type can be instantiated using the input and output image
// types defined above. A filter object is created with the \code{New()}
// method.
//
// \index{itk::Danielsson\-Distance\-Map\-Image\-Filter!instantiation}
// \index{itk::Danielsson\-Distance\-Map\-Image\-Filter!New()}
// \index{itk::Danielsson\-Distance\-Map\-Image\-Filter!Pointer}
using ConnectedType = itk::ConnectedComponentImageFilter<InputImageType, InputImageType>;
ConnectedType::Pointer connectedComponents = ConnectedType::New();
using FilterType = itk::DanielssonDistanceMapImageFilter<InputImageType, OutputImageType, OutputImageType>;
FilterType::Pointer filter = FilterType::New();
using RescalerType = itk::RescaleIntensityImageFilter<OutputImageType, OutputImageType>;
RescalerType::Pointer scaler = RescalerType::New();
//
// Reader and Writer types are instantiated.
//
using ReaderType = otb::ImageFileReader<InputImageType>;
using WriterType = otb::ImageFileWriter<OutputImageType>;
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
reader->SetFileName(argv[1]);
writer->SetFileName(argv[2]);
// The input to the filter is taken from a reader and its output is passed
// to a \doxygen{itk}{RescaleIntensityImageFilter} and then to a writer.
//
// \index{itk::Danielsson\-Distance\-Map\-Image\-Filter!SetInput()}
// \index{itk::Danielsson\-Distance\-Map\-Image\-Filter!GetOutput()}
connectedComponents->SetInput(reader->GetOutput());
filter->SetInput(connectedComponents->GetOutput());
scaler->SetInput(filter->GetOutput());
writer->SetInput(scaler->GetOutput());
scaler->SetOutputMaximum(65535L);
scaler->SetOutputMinimum(0L);
// The type of input image has to be specified. In this case, a binary
// image is selected.
//
// \index{itk::Danielsson\-Distance\-MapImage\-Filter!InputIsBinaryOn()}
filter->InputIsBinaryOff();
// \begin{figure}
// \center
// \includegraphics[width=0.32\textwidth]{FivePoints.eps}
// \includegraphics[width=0.32\textwidth]{DanielssonDistanceMapImageFilterOutput1.eps}
// \includegraphics[width=0.32\textwidth]{DanielssonDistanceMapImageFilterOutput2.eps}
// \itkcaption[DanielssonDistanceMapImageFilter
// output]{DanielssonDistanceMapImageFilter output. Set of pixels, distance
// map and Voronoi partition.}
// \label{fig:DanielssonDistanceMapImageFilterInputOutput}
// \end{figure}
//
// Figure \ref{fig:DanielssonDistanceMapImageFilterInputOutput} illustrates
// the effect of this filter on a binary image with a set of points. The
// input image is shown at left, the distance map at the center and the
// Voronoi partition at right. This filter computes distance maps in
// N-dimensions and is therefore capable of producing $N-D$ Voronoi
// partitions.
//
// \index{Voronoi partitions}
// \index{Voronoi partitions!itk::Danielsson\-Distance\-Map\-Image\-Filter}
writer->Update();
const char* voronoiMapFileName = argv[3];
// The Voronoi map is obtained with the \code{GetVoronoiMap()} method. In
// the lines below we connect this output to the intensity rescaler and
// save the result in a file.
//
// \index{itk::Danielsson\-Distance\-Map\-Image\-Filter!GetVoronoiMap()}
scaler->SetInput(filter->GetVoronoiMap());
writer->SetFileName(voronoiMapFileName);
writer->Update();
// Execution of the writer is triggered by the invocation of the
// \code{Update()} method. Since this method can potentially throw
// exceptions it must be placed in a \code{try/catch} block.
return EXIT_SUCCESS;
}
|