File: DanielssonDistanceMapImageFilter.cxx

package info (click to toggle)
otb 7.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,005,476 kB
  • sloc: cpp: 270,143; xml: 128,722; ansic: 4,367; sh: 1,768; python: 1,084; perl: 92; makefile: 72
file content (164 lines) | stat: -rw-r--r-- 6,559 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
/*
 * Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


/* Example usage:
./DanielssonDistanceMapImageFilter Input/FivePoints.png Output/DanielssonDistanceMapImageFilterOutput1.png Output/DanielssonDistanceMapImageFilterOutput2.png
*/


// This example illustrates the use of the
// \doxygen{itk}{DanielssonDistanceMapImageFilter}.  This filter generates a
// distance map from the input image using the algorithm developed by
// Danielsson \cite{Danielsson1980}. As secondary outputs, a Voronoi
// partition of the input elements is produced, as well as a vector image
// with the components of the distance vector to the closest point. The input
// to the map is assumed to be a set of points on the input image. Each
// point/pixel is considered to be a separate entity even if they share the
// same gray level value.
//
// \index{itk::Danielsson\-Distance\-Map\-Image\-Filter!Instantiation}
// \index{itk::Danielsson\-Distance\-Map\-Image\-Filter!Header}
//
// The first step required to use this filter is to include its header file.

#include "itkConnectedComponentImageFilter.h"
#include "itkDanielssonDistanceMapImageFilter.h"

#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"

int main(int argc, char* argv[])
{
  if (argc < 4)
  {
    std::cerr << "Usage: " << argv[0];
    std::cerr << " inputImageFile outputDistanceMapImageFile ";
    std::cerr << " outputVoronoiMapImageFilter ";
    std::cerr << std::endl;
    return EXIT_FAILURE;
  }

  //  Then we must decide what pixel types to use for the input and output
  //  images. Since the output will contain distances measured in pixels, the
  //  pixel type should be able to represent at least the width of the image,
  //  or said in $N-D$ terms, the maximum extension along all the dimensions.
  //  The input and output image types are now defined using their respective
  //  pixel type and dimension.

  using InputPixelType  = unsigned char;
  using OutputPixelType = unsigned short;
  using InputImageType  = otb::Image<InputPixelType, 2>;
  using OutputImageType = otb::Image<OutputPixelType, 2>;

  //  The filter type can be instantiated using the input and output image
  //  types defined above. A filter object is created with the \code{New()}
  //  method.
  //
  //  \index{itk::Danielsson\-Distance\-Map\-Image\-Filter!instantiation}
  //  \index{itk::Danielsson\-Distance\-Map\-Image\-Filter!New()}
  //  \index{itk::Danielsson\-Distance\-Map\-Image\-Filter!Pointer}

  using ConnectedType                        = itk::ConnectedComponentImageFilter<InputImageType, InputImageType>;
  ConnectedType::Pointer connectedComponents = ConnectedType::New();

  using FilterType           = itk::DanielssonDistanceMapImageFilter<InputImageType, OutputImageType, OutputImageType>;
  FilterType::Pointer filter = FilterType::New();

  using RescalerType           = itk::RescaleIntensityImageFilter<OutputImageType, OutputImageType>;
  RescalerType::Pointer scaler = RescalerType::New();

  //
  // Reader and Writer types are instantiated.
  //
  using ReaderType = otb::ImageFileReader<InputImageType>;
  using WriterType = otb::ImageFileWriter<OutputImageType>;

  ReaderType::Pointer reader = ReaderType::New();
  WriterType::Pointer writer = WriterType::New();

  reader->SetFileName(argv[1]);
  writer->SetFileName(argv[2]);

  //  The input to the filter is taken from a reader and its output is passed
  //  to a \doxygen{itk}{RescaleIntensityImageFilter} and then to a writer.
  //
  //  \index{itk::Danielsson\-Distance\-Map\-Image\-Filter!SetInput()}
  //  \index{itk::Danielsson\-Distance\-Map\-Image\-Filter!GetOutput()}

  connectedComponents->SetInput(reader->GetOutput());
  filter->SetInput(connectedComponents->GetOutput());
  scaler->SetInput(filter->GetOutput());
  writer->SetInput(scaler->GetOutput());

  scaler->SetOutputMaximum(65535L);
  scaler->SetOutputMinimum(0L);

  //  The type of input image has to be specified. In this case, a binary
  //  image is selected.
  //
  //  \index{itk::Danielsson\-Distance\-MapImage\-Filter!InputIsBinaryOn()}

  filter->InputIsBinaryOff();

  // \begin{figure}
  // \center
  // \includegraphics[width=0.32\textwidth]{FivePoints.eps}
  // \includegraphics[width=0.32\textwidth]{DanielssonDistanceMapImageFilterOutput1.eps}
  // \includegraphics[width=0.32\textwidth]{DanielssonDistanceMapImageFilterOutput2.eps}
  // \itkcaption[DanielssonDistanceMapImageFilter
  // output]{DanielssonDistanceMapImageFilter output. Set of pixels, distance
  // map and Voronoi partition.}
  // \label{fig:DanielssonDistanceMapImageFilterInputOutput}
  // \end{figure}
  //
  //  Figure \ref{fig:DanielssonDistanceMapImageFilterInputOutput} illustrates
  //  the effect of this filter on a binary image with a set of points. The
  //  input image is shown at left, the distance map at the center and the
  //  Voronoi partition at right. This filter computes distance maps in
  //  N-dimensions and is therefore capable of producing $N-D$ Voronoi
  //  partitions.
  //
  //  \index{Voronoi partitions}
  //  \index{Voronoi partitions!itk::Danielsson\-Distance\-Map\-Image\-Filter}

  writer->Update();
  const char* voronoiMapFileName = argv[3];

  //  The Voronoi map is obtained with the \code{GetVoronoiMap()} method. In
  //  the lines below we connect this output to the intensity rescaler and
  //  save the result in a file.
  //
  //  \index{itk::Danielsson\-Distance\-Map\-Image\-Filter!GetVoronoiMap()}

  scaler->SetInput(filter->GetVoronoiMap());
  writer->SetFileName(voronoiMapFileName);
  writer->Update();

  //  Execution of the writer is triggered by the invocation of the
  //  \code{Update()} method. Since this method can potentially throw
  //  exceptions it must be placed in a \code{try/catch} block.


  return EXIT_SUCCESS;
}