1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
/*
* Copyright (C) 1999-2011 Insight Software Consortium
* Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// This example illustrates how to import data into the \doxygen{otb}{Image}
// class. This is particularly useful for interfacing with other software
// systems. Many systems use a contiguous block of memory as a buffer
// for image pixel data. The current example assumes this is the case and
// feeds the buffer into an \doxygen{otb}{ImportImageFilter}, thereby producing an
// Image as output.
//
// For fun we create a synthetic image with a centered sphere in
// a locally allocated buffer and pass this block of memory to the
// ImportImageFilter. This example is set up so that on execution, the
// user must provide the name of an output file as a command-line argument.
//
// \index{otb::ImportImageFilter!Instantiation}
// \index{otb::ImportImageFilter!Header}
//
// First, the header file of the ImportImageFilter class must be
// included.
#include "otbImage.h"
#include "otbImportImageFilter.h"
#include "otbImageFileWriter.h"
#include "itkRGBPixel.h"
int main(int argc, char* argv[])
{
if (argc < 2)
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " outputImageFile" << std::endl;
return 1;
}
// Next, we select the data type to use to represent the image pixels. We
// assume that the external block of memory uses the same data type to
// represent the pixels.
//
using PixelType = unsigned char;
const unsigned int Dimension = 2;
using ImageType = otb::Image<PixelType, Dimension>;
// The type of the ImportImageFilter is instantiated in the
// following line.
//
// \index{otb::ImportImageFilter!Instantiation}
using ImportFilterType = otb::ImportImageFilter<ImageType>;
// A filter object created using the \code{New()} method is then
// assigned to a \code{SmartPointer}.
//
// \index{otb::ImportImageFilter!Pointer}
// \index{otb::ImportImageFilter!New()}
//
ImportFilterType::Pointer importFilter = ImportFilterType::New();
// This filter requires the user to specify the size of the image to be
// produced as output. The \code{SetRegion()} method is used to this end.
// The image size should exactly match the number of pixels available in the
// locally allocated buffer.
//
// \index{otb::ImportImageFilter!SetRegion()}
// \index{otb::ImportImageFilter!New()}
// \index{otb::ImportImageFilter!New()}
//
ImportFilterType::SizeType size;
size[0] = 200; // size along X
size[1] = 200; // size along Y
ImportFilterType::IndexType start;
start.Fill(0);
ImportFilterType::RegionType region;
region.SetIndex(start);
region.SetSize(size);
importFilter->SetRegion(region);
// The origin of the output image is specified with the \code{SetOrigin()}
// method.
double origin[Dimension];
origin[0] = 0.0; // X coordinate
origin[1] = 0.0; // Y coordinate
importFilter->SetOrigin(origin);
// The spacing of the image is passed with the \code{SetSpacing()} method.
double spacing[Dimension];
spacing[0] = 1.0; // along X direction
spacing[1] = 1.0; // along Y direction
importFilter->SetSpacing(spacing);
// Next we allocate the memory block containing the pixel data to be
// passed to the ImportImageFilter. Note that we use exactly the
// same size that was specified with the \code{SetRegion()} method. In a
// practical application, you may get this buffer from some other library
// using a different data structure to represent the images.
// MODIFIED
const unsigned int numberOfPixels = size[0] * size[1];
PixelType* localBuffer = new PixelType[numberOfPixels];
const double radius = 80.0;
// Here we fill up the buffer with a binary sphere. We use simple
// \code{for()} loops here similar to those found in the C or FORTRAN
// programming languages. Note that otb
// does not use \code{for()} loops in its internal code to access
// pixels. All pixel access tasks are instead performed using
// \doxygen{otb}{ImageIterator}s that support the management of
// n-dimensional images.
const double radius2 = radius * radius;
PixelType* it = localBuffer;
for (unsigned int y = 0; y < size[1]; y++)
{
const double dy = static_cast<double>(y) - static_cast<double>(size[1]) / 2.0;
for (unsigned int x = 0; x < size[0]; x++)
{
const double dx = static_cast<double>(x) - static_cast<double>(size[0]) / 2.0;
const double d2 = dx * dx + dy * dy;
*it++ = (d2 < radius2) ? 255 : 0;
}
}
// The buffer is passed to the ImportImageFilter with the
// \code{SetImportPointer()}. Note that the last argument of this method
// specifies who will be responsible for deleting the memory block once it
// is no longer in use. A \code{false} value indicates that the
// ImportImageFilter will not try to delete the buffer when its
// destructor is called. A \code{true} value, on the other hand, will allow the
// filter to delete the memory block upon destruction of the import filter.
//
// For the ImportImageFilter to appropriately delete the
// memory block, the memory must be allocated with the C++
// \code{new()} operator. Memory allocated with other memory
// allocation mechanisms, such as C \code{malloc} or \code{calloc}, will not
// be deleted properly by the ImportImageFilter. In
// other words, it is the application programmer's responsibility
// to ensure that ImportImageFilter is only given
// permission to delete the C++ \code{new} operator-allocated memory.
const bool importImageFilterWillOwnTheBuffer = true;
importFilter->SetImportPointer(localBuffer, numberOfPixels, importImageFilterWillOwnTheBuffer);
// Finally, we can connect the output of this filter to a pipeline.
// For simplicity we just use a writer here, but it could be any other filter.
using WriterType = otb::ImageFileWriter<ImageType>;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName(argv[1]);
writer->SetInput(dynamic_cast<ImageType*>(importFilter->GetOutput()));
try
{
writer->Update();
}
catch (itk::ExceptionObject& exp)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << exp << std::endl;
return -1;
}
// Note that we do not call \code{delete} on the buffer since we pass
// \code{true} as the last argument of \code{SetImportPointer()}. Now the
// buffer is owned by the ImportImageFilter.
return EXIT_SUCCESS;
}
|