File: MarkovClassification1Example.cxx

package info (click to toggle)
otb 7.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,005,476 kB
  • sloc: cpp: 270,143; xml: 128,722; ansic: 4,367; sh: 1,768; python: 1,084; perl: 92; makefile: 72
file content (212 lines) | stat: -rw-r--r-- 8,576 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
/*
 * Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


/* Example usage:
./MarkovClassification1Example Input/QB_Suburb.png Output/MarkovRandomField1.png 1.0 20 1.0 1
*/


// This example illustrates the details of the \doxygen{otb}{MarkovRandomFieldFilter}.
// This filter is an application of the Markov Random Fields for classification,
// segmentation or restoration.
//
// This example applies the \doxygen{otb}{MarkovRandomFieldFilter} to
// classify an image into four classes defined by their mean and variance. The
// optimization is done using an Metropolis algorithm with a random sampler. The
// regularization energy is defined by a Potts model and the fidelity by a
// Gaussian model.
//

#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbImage.h"
#include "otbMarkovRandomFieldFilter.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"

// The first step toward the use of this filter is the inclusion of the proper
// header files.

#include "otbMRFEnergyPotts.h"
#include "otbMRFEnergyGaussianClassification.h"
#include "otbMRFOptimizerMetropolis.h"
#include "otbMRFSamplerRandom.h"

int main(int argc, char* argv[])
{

  if (argc != 7)
  {
    std::cerr << "Missing Parameters " << argc << std::endl;
    std::cerr << "Usage: " << argv[0];
    std::cerr << " inputImage output lambda iterations optimizerTemperature" << std::endl;
    std::cerr << " useRandomValue" << std::endl;
    return 1;
  }

  //  Then we must decide what pixel type to use for the image. We
  //  choose to make all computations with double precision.
  //  The labelled image is of type unsigned char which allows up to 256 different
  //  classes.

  const unsigned int Dimension = 2;

  using InternalPixelType = double;
  using LabelledPixelType = unsigned char;
  using InputImageType    = otb::Image<InternalPixelType, Dimension>;
  using LabelledImageType = otb::Image<LabelledPixelType, Dimension>;

  //  We define a reader for the image to be classified, an initialization for the
  //  classification (which could be random) and a writer for the final
  //  classification.

  using ReaderType = otb::ImageFileReader<InputImageType>;
  using WriterType = otb::ImageFileWriter<LabelledImageType>;

  ReaderType::Pointer reader = ReaderType::New();
  WriterType::Pointer writer = WriterType::New();

  const char* inputFilename  = argv[1];
  const char* outputFilename = argv[2];

  reader->SetFileName(inputFilename);
  writer->SetFileName(outputFilename);

  //  Finally, we define the different classes necessary for the Markov classification.
  //  A \doxygen{otb}{MarkovRandomFieldFilter} is instantiated, this is the
  // main class which connect the other to do the Markov classification.

  using MarkovRandomFieldFilterType = otb::MarkovRandomFieldFilter<InputImageType, LabelledImageType>;

  //  An \doxygen{otb}{MRFSamplerRandomMAP}, which derives from the
  // \doxygen{otb}{MRFSampler}, is instantiated. The sampler is in charge of
  // proposing a modification for a given site. The
  // \doxygen{otb}{MRFSamplerRandomMAP}, randomly pick one possible value
  // according to the MAP probability.

  using SamplerType = otb::MRFSamplerRandom<InputImageType, LabelledImageType>;

  //  An \doxygen{otb}{MRFOptimizerMetropoli}, which derives from the
  // \doxygen{otb}{MRFOptimizer}, is instantiated. The optimizer is in charge
  // of accepting or rejecting the value proposed by the sampler. The
  // \doxygen{otb}{MRFSamplerRandomMAP}, accept the proposal according to the
  // variation of energy it causes and a temperature parameter.

  using OptimizerType = otb::MRFOptimizerMetropolis;

  // Two energy, deriving from the \doxygen{otb}{MRFEnergy} class need to be instantiated. One energy
  // is required for the regularization, taking into account the relashionship between neighborhing pixels
  // in the classified image. Here it is done with the \doxygen{otb}{MRFEnergyPotts} which implement
  // a Potts model.
  //
  // The second energy is for the fidelity to the original data. Here it is done with an
  // \doxygen{otb}{MRFEnergyGaussianClassification} class, which defines a gaussian model for the data.

  using EnergyRegularizationType = otb::MRFEnergyPotts<LabelledImageType, LabelledImageType>;
  using EnergyFidelityType       = otb::MRFEnergyGaussianClassification<InputImageType, LabelledImageType>;

  // The different filters composing our pipeline are created by invoking their
  // \code{New()} methods, assigning the results to smart pointers.

  MarkovRandomFieldFilterType::Pointer markovFilter         = MarkovRandomFieldFilterType::New();
  EnergyRegularizationType::Pointer    energyRegularization = EnergyRegularizationType::New();
  EnergyFidelityType::Pointer          energyFidelity       = EnergyFidelityType::New();
  OptimizerType::Pointer               optimizer            = OptimizerType::New();
  SamplerType::Pointer                 sampler              = SamplerType::New();

  // Parameter for the \doxygen{otb}{MRFEnergyGaussianClassification} class, meand
  // and standard deviation are created.

  if ((bool)(atoi(argv[6])) == true)
  {
    // Overpass random calculation(for test only):
    sampler->InitializeSeed(0);
    optimizer->InitializeSeed(1);
    markovFilter->InitializeSeed(2);
  }

  unsigned int nClass = 4;
  energyFidelity->SetNumberOfParameters(2 * nClass);
  EnergyFidelityType::ParametersType parameters;
  parameters.SetSize(energyFidelity->GetNumberOfParameters());
  parameters[0] = 10.0;  // Class 0 mean
  parameters[1] = 10.0;  // Class 0 stdev
  parameters[2] = 80.0;  // Class 1 mean
  parameters[3] = 10.0;  // Class 1 stdev
  parameters[4] = 150.0; // Class 2 mean
  parameters[5] = 10.0;  // Class 2 stdev
  parameters[6] = 220.0; // Class 3 mean
  parameters[7] = 10.0;  // Class 3 stde
  energyFidelity->SetParameters(parameters);

  // Parameters are given to the different class an the sampler, optimizer and
  // energies are connected with the Markov filter.

  OptimizerType::ParametersType param(1);
  param.Fill(atof(argv[5]));
  optimizer->SetParameters(param);
  markovFilter->SetNumberOfClasses(nClass);
  markovFilter->SetMaximumNumberOfIterations(atoi(argv[4]));
  markovFilter->SetErrorTolerance(0.0);
  markovFilter->SetLambda(atof(argv[3]));
  markovFilter->SetNeighborhoodRadius(1);

  markovFilter->SetEnergyRegularization(energyRegularization);
  markovFilter->SetEnergyFidelity(energyFidelity);
  markovFilter->SetOptimizer(optimizer);
  markovFilter->SetSampler(sampler);

  // The pipeline is connected. An \doxygen{itk}{RescaleIntensityImageFilter}
  // rescale the classified image before saving it.

  markovFilter->SetInput(reader->GetOutput());

  using RescaleType                  = itk::RescaleIntensityImageFilter<LabelledImageType, LabelledImageType>;
  RescaleType::Pointer rescaleFilter = RescaleType::New();
  rescaleFilter->SetOutputMinimum(0);
  rescaleFilter->SetOutputMaximum(255);

  rescaleFilter->SetInput(markovFilter->GetOutput());

  writer->SetInput(rescaleFilter->GetOutput());

  // Finally, the pipeline execution is trigerred.

  writer->Update();

  // Figure~\ref{fig:MRF_CLASSIFICATION1} shows the output of the Markov Random
  // Field classification after 20 iterations with a
  // random sampler and a Metropolis optimizer.
  //
  // \begin{figure}
  // \center
  // \includegraphics[width=0.44\textwidth]{QB_Suburb.eps}
  // \includegraphics[width=0.44\textwidth]{MarkovRandomField1.eps}
  // \itkcaption[MRF restoration]{Result of applying
  // the \doxygen{otb}{MarkovRandomFieldFilter} to an extract from a PAN Quickbird
  // image for classification. The result is obtained after 20 iterations with a
  // random sampler and a Metropolis optimizer. From left to right : original image,
  // classification.}
  // \label{fig:MRF_CLASSIFICATION1}
  // \end{figure}

  return EXIT_SUCCESS;
}