1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
/*
* Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Example usage:
./MarkovClassification2Example Input/QB_Suburb.png Output/MarkovRandomField2.png 1.0 5 1
*/
// Using a similar structure as the previous program and the same energy
// function, we are now going to slightly alter the program to use a
// different sampler and optimizer. The proposed sample is proposed
// randomly according to the MAP probability and the optimizer is the
// ICM which accept the proposed sample if it enable a reduction of
// the energy.
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbImage.h"
#include "otbMarkovRandomFieldFilter.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
// First, we need to include header specific to these class:
#include "otbMRFEnergyPotts.h"
#include "otbMRFEnergyGaussianClassification.h"
#include "otbMRFSamplerRandomMAP.h"
#include "otbMRFOptimizerICM.h"
int main(int argc, char* argv[])
{
if (argc != 6)
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " inputImage output lambda iterations" << std::endl;
std::cerr << " useRandomValue" << std::endl;
return 1;
}
const unsigned int Dimension = 2;
using InternalPixelType = double;
using LabelledPixelType = unsigned char;
using InputImageType = otb::Image<InternalPixelType, Dimension>;
using LabelledImageType = otb::Image<LabelledPixelType, Dimension>;
using ReaderType = otb::ImageFileReader<InputImageType>;
using WriterType = otb::ImageFileWriter<LabelledImageType>;
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
const char* inputFilename = argv[1];
const char* outputFilename = argv[2];
reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);
using MarkovRandomFieldFilterType = otb::MarkovRandomFieldFilter<InputImageType, LabelledImageType>;
// And to declare these new type:
using SamplerType = otb::MRFSamplerRandomMAP<InputImageType, LabelledImageType>;
// using SamplerType = otb::MRFSamplerRandom< InputImageType, LabelledImageType>;
using OptimizerType = otb::MRFOptimizerICM;
using EnergyRegularizationType = otb::MRFEnergyPotts<LabelledImageType, LabelledImageType>;
using EnergyFidelityType = otb::MRFEnergyGaussianClassification<InputImageType, LabelledImageType>;
MarkovRandomFieldFilterType::Pointer markovFilter = MarkovRandomFieldFilterType::New();
EnergyRegularizationType::Pointer energyRegularization = EnergyRegularizationType::New();
EnergyFidelityType::Pointer energyFidelity = EnergyFidelityType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
SamplerType::Pointer sampler = SamplerType::New();
if ((bool)(atoi(argv[5])) == true)
{
// Overpass random calculation(for test only):
sampler->InitializeSeed(0);
markovFilter->InitializeSeed(1);
}
unsigned int nClass = 4;
energyFidelity->SetNumberOfParameters(2 * nClass);
EnergyFidelityType::ParametersType parameters;
parameters.SetSize(energyFidelity->GetNumberOfParameters());
parameters[0] = 10.0; // Class 0 mean
parameters[1] = 10.0; // Class 0 stdev
parameters[2] = 80.0; // Class 1 mean
parameters[3] = 10.0; // Class 1 stdev
parameters[4] = 150.0; // Class 2 mean
parameters[5] = 10.0; // Class 2 stdev
parameters[6] = 220.0; // Class 3 mean
parameters[7] = 10.0; // Class 3 stde
energyFidelity->SetParameters(parameters);
// As the \doxygen{otb}{MRFOptimizerICM} does not have any parameters,
// the call to \code{optimizer->SetParameters()} must be removed
markovFilter->SetNumberOfClasses(nClass);
markovFilter->SetMaximumNumberOfIterations(atoi(argv[4]));
markovFilter->SetErrorTolerance(0.0);
markovFilter->SetLambda(atof(argv[3]));
markovFilter->SetNeighborhoodRadius(1);
markovFilter->SetEnergyRegularization(energyRegularization);
markovFilter->SetEnergyFidelity(energyFidelity);
markovFilter->SetOptimizer(optimizer);
markovFilter->SetSampler(sampler);
markovFilter->SetInput(reader->GetOutput());
using RescaleType = itk::RescaleIntensityImageFilter<LabelledImageType, LabelledImageType>;
RescaleType::Pointer rescaleFilter = RescaleType::New();
rescaleFilter->SetOutputMinimum(0);
rescaleFilter->SetOutputMaximum(255);
rescaleFilter->SetInput(markovFilter->GetOutput());
writer->SetInput(rescaleFilter->GetOutput());
writer->Update();
// Apart from these, no further modification is required.
// Figure~\ref{fig:MRF_CLASSIFICATION2} shows the output of the Markov Random
// Field classification after 5 iterations with a
// MAP random sampler and an ICM optimizer.
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{QB_Suburb.eps}
// \includegraphics[width=0.44\textwidth]{MarkovRandomField2.eps}
// \itkcaption[MRF restoration]{Result of applying
// the \doxygen{otb}{MarkovRandomFieldFilter} to an extract from a PAN Quickbird
// image for classification. The result is obtained after 5 iterations with a
// MAP random sampler and an ICM optimizer. From left to right : original image,
// classification.}
// \label{fig:MRF_CLASSIFICATION2}
// \end{figure}
return EXIT_SUCCESS;
}
|