File: MarkovClassification2Example.cxx

package info (click to toggle)
otb 7.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,005,476 kB
  • sloc: cpp: 270,143; xml: 128,722; ansic: 4,367; sh: 1,768; python: 1,084; perl: 92; makefile: 72
file content (165 lines) | stat: -rw-r--r-- 6,080 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
/*
 * Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


/* Example usage:
./MarkovClassification2Example Input/QB_Suburb.png Output/MarkovRandomField2.png 1.0 5 1
*/


// Using a similar structure as the previous program and the same energy
// function, we are now going to slightly alter the program to use a
// different sampler and optimizer. The proposed sample is proposed
// randomly according to the MAP probability and the optimizer is the
// ICM which accept the proposed sample if it enable a reduction of
// the energy.

#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbImage.h"
#include "otbMarkovRandomFieldFilter.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"

// First, we need to include header specific to these class:

#include "otbMRFEnergyPotts.h"
#include "otbMRFEnergyGaussianClassification.h"

#include "otbMRFSamplerRandomMAP.h"
#include "otbMRFOptimizerICM.h"

int main(int argc, char* argv[])
{

  if (argc != 6)
  {
    std::cerr << "Missing Parameters " << std::endl;
    std::cerr << "Usage: " << argv[0];
    std::cerr << " inputImage output lambda iterations" << std::endl;
    std::cerr << " useRandomValue" << std::endl;
    return 1;
  }

  const unsigned int Dimension = 2;

  using InternalPixelType = double;
  using LabelledPixelType = unsigned char;
  using InputImageType    = otb::Image<InternalPixelType, Dimension>;
  using LabelledImageType = otb::Image<LabelledPixelType, Dimension>;

  using ReaderType = otb::ImageFileReader<InputImageType>;
  using WriterType = otb::ImageFileWriter<LabelledImageType>;

  ReaderType::Pointer reader = ReaderType::New();
  WriterType::Pointer writer = WriterType::New();

  const char* inputFilename  = argv[1];
  const char* outputFilename = argv[2];

  reader->SetFileName(inputFilename);
  writer->SetFileName(outputFilename);

  using MarkovRandomFieldFilterType = otb::MarkovRandomFieldFilter<InputImageType, LabelledImageType>;

  //  And to declare these new type:

  using SamplerType = otb::MRFSamplerRandomMAP<InputImageType, LabelledImageType>;
  //   using SamplerType = otb::MRFSamplerRandom< InputImageType, LabelledImageType>;

  using OptimizerType = otb::MRFOptimizerICM;

  using EnergyRegularizationType = otb::MRFEnergyPotts<LabelledImageType, LabelledImageType>;
  using EnergyFidelityType       = otb::MRFEnergyGaussianClassification<InputImageType, LabelledImageType>;

  MarkovRandomFieldFilterType::Pointer markovFilter         = MarkovRandomFieldFilterType::New();
  EnergyRegularizationType::Pointer    energyRegularization = EnergyRegularizationType::New();
  EnergyFidelityType::Pointer          energyFidelity       = EnergyFidelityType::New();
  OptimizerType::Pointer               optimizer            = OptimizerType::New();
  SamplerType::Pointer                 sampler              = SamplerType::New();

  if ((bool)(atoi(argv[5])) == true)
  {
    // Overpass random calculation(for test only):
    sampler->InitializeSeed(0);
    markovFilter->InitializeSeed(1);
  }

  unsigned int nClass = 4;
  energyFidelity->SetNumberOfParameters(2 * nClass);
  EnergyFidelityType::ParametersType parameters;
  parameters.SetSize(energyFidelity->GetNumberOfParameters());
  parameters[0] = 10.0;  // Class 0 mean
  parameters[1] = 10.0;  // Class 0 stdev
  parameters[2] = 80.0;  // Class 1 mean
  parameters[3] = 10.0;  // Class 1 stdev
  parameters[4] = 150.0; // Class 2 mean
  parameters[5] = 10.0;  // Class 2 stdev
  parameters[6] = 220.0; // Class 3 mean
  parameters[7] = 10.0;  // Class 3 stde
  energyFidelity->SetParameters(parameters);

  // As the \doxygen{otb}{MRFOptimizerICM} does not have any parameters,
  // the call to \code{optimizer->SetParameters()} must be removed

  markovFilter->SetNumberOfClasses(nClass);
  markovFilter->SetMaximumNumberOfIterations(atoi(argv[4]));
  markovFilter->SetErrorTolerance(0.0);
  markovFilter->SetLambda(atof(argv[3]));
  markovFilter->SetNeighborhoodRadius(1);

  markovFilter->SetEnergyRegularization(energyRegularization);
  markovFilter->SetEnergyFidelity(energyFidelity);
  markovFilter->SetOptimizer(optimizer);
  markovFilter->SetSampler(sampler);

  markovFilter->SetInput(reader->GetOutput());

  using RescaleType                  = itk::RescaleIntensityImageFilter<LabelledImageType, LabelledImageType>;
  RescaleType::Pointer rescaleFilter = RescaleType::New();
  rescaleFilter->SetOutputMinimum(0);
  rescaleFilter->SetOutputMaximum(255);

  rescaleFilter->SetInput(markovFilter->GetOutput());

  writer->SetInput(rescaleFilter->GetOutput());

  writer->Update();

  // Apart from these, no further modification is required.

  // Figure~\ref{fig:MRF_CLASSIFICATION2} shows the output of the Markov Random
  // Field classification after 5 iterations with a
  // MAP random sampler and an ICM optimizer.
  //
  // \begin{figure}
  // \center
  // \includegraphics[width=0.44\textwidth]{QB_Suburb.eps}
  // \includegraphics[width=0.44\textwidth]{MarkovRandomField2.eps}
  // \itkcaption[MRF restoration]{Result of applying
  // the \doxygen{otb}{MarkovRandomFieldFilter} to an extract from a PAN Quickbird
  // image for classification. The result is obtained after 5 iterations with a
  // MAP random sampler and an ICM optimizer. From left to right : original image,
  // classification.}
  // \label{fig:MRF_CLASSIFICATION2}
  // \end{figure}

  return EXIT_SUCCESS;
}