1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
/*
* Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Example usage:
./MarkovClassification3Example Input/QB_Suburb.png Output/MarkovRandomField3_gray_value.png Output/MarkovRandomField3_color_value.png 1.0 20 1.0 1
*/
// This example illustrates the details of the MarkovRandomFieldFilter by using the Fisher distribution
// to model the likelihood energy.
// This filter is an application of the Markov Random Fields for classification.
//
// This example applies the MarkovRandomFieldFilter to
// classify an image into four classes defined by their Fisher distribution parameters L, M and mu.
// The optimization is done using a Metropolis algorithm with a random sampler. The
// regularization energy is defined by a Potts model and the fidelity or likelihood energy is modelled by a
// Fisher distribution.
// The parameter of the Fisher distribution was determined for each class in a supervised step.
// ( See the File OtbParameterEstimatioOfFisherDistribution )
// This example is a contribution from Jan Wegner.
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbImage.h"
#include "otbMarkovRandomFieldFilter.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkScalarToRGBPixelFunctor.h"
#include "otbMRFEnergyPotts.h"
#include "otbMRFEnergyFisherClassification.h"
#include "otbMRFOptimizerMetropolis.h"
#include "otbMRFSamplerRandom.h"
int main(int argc, char* argv[])
{
if (argc != 8)
{
std::cerr << "Missing Parameters " << argc << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " inputImage output_gray_label output_color_label lambda iterations "
"optimizerTemperature useRandomValue "
<< std::endl;
return 1;
}
// Then we must decide what pixel type to use for the image. We
// choose to make all computations with double precision.
// The labeled image is of type unsigned char which allows up to 256 different
// classes.
const unsigned int Dimension = 2;
using InternalPixelType = double;
using LabelledPixelType = unsigned char;
using InputImageType = otb::Image<InternalPixelType, Dimension>;
using LabelledImageType = otb::Image<LabelledPixelType, Dimension>;
// We define a reader for the image to be classified, an initialization for the
// classification (which could be random) and a writer for the final
// classification.
using ReaderType = otb::ImageFileReader<InputImageType>;
using WriterType = otb::ImageFileWriter<LabelledImageType>;
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
const char* inputFilename = argv[1];
const char* outputFilename = argv[2];
const char* outputRescaledImageFileName = argv[3];
reader->SetFileName(inputFilename);
writer->SetFileName(outputFilename);
// Finally, we define the different classes necessary for the Markov classification.
// A MarkovRandomFieldFilter is instantiated, this is the
// main class which connect the other to do the Markov classification.
using MarkovRandomFieldFilterType = otb::MarkovRandomFieldFilter<InputImageType, LabelledImageType>;
// An MRFSamplerRandomMAP, which derives from the
// MRFSampler, is instantiated. The sampler is in charge of
// proposing a modification for a given site. The
// MRFSamplerRandomMAP, randomly pick one possible value
// according to the MAP probability.
using SamplerType = otb::MRFSamplerRandom<InputImageType, LabelledImageType>;
// An MRFOptimizerMetropolis, which derives from the
// MRFOptimizer, is instantiated. The optimizer is in charge
// of accepting or rejecting the value proposed by the sampler. The
// MRFSamplerRandomMAP, accept the proposal according to the
// variation of energy it causes and a temperature parameter.
using OptimizerType = otb::MRFOptimizerMetropolis;
// Two energy, deriving from the MRFEnergy class need to be instantiated. One energy
// is required for the regularization, taking into account the relationship between neighboring pixels
// in the classified image. Here it is done with the MRFEnergyPotts, which implements
// a Potts model.
//
// The second energy is used for the fidelity to the original data. Here it is done with a
// MRFEnergyFisherClassification class, which defines a Fisher distribution to model the data.
using EnergyRegularizationType = otb::MRFEnergyPotts<LabelledImageType, LabelledImageType>;
using EnergyFidelityType = otb::MRFEnergyFisherClassification<InputImageType, LabelledImageType>;
// The different filters composing our pipeline are created by invoking their
// New() methods, assigning the results to smart pointers.
MarkovRandomFieldFilterType::Pointer markovFilter = MarkovRandomFieldFilterType::New();
EnergyRegularizationType::Pointer energyRegularization = EnergyRegularizationType::New();
EnergyFidelityType::Pointer energyFidelity = EnergyFidelityType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
SamplerType::Pointer sampler = SamplerType::New();
// Parameter for the MRFEnergyFisherClassification class are created. The shape parameters M, L
// and the weighting parameter mu are computed in a supervised step
if ((bool)(atoi(argv[6])) == true)
{
// Overpass random calculation(for test only):
sampler->InitializeSeed(0);
optimizer->InitializeSeed(1);
markovFilter->InitializeSeed(1);
}
unsigned int nClass = 4;
energyFidelity->SetNumberOfParameters(3 * nClass);
EnergyFidelityType::ParametersType parameters;
parameters.SetSize(energyFidelity->GetNumberOfParameters());
// Class 0
parameters[0] = 12.353042; // Class 0 mu
parameters[1] = 2.156422; // Class 0 L
parameters[2] = 4.920403; // Class 0 M
// Class 1
parameters[3] = 72.068291; // Class 1 mu
parameters[4] = 11.000000; // Class 1 L
parameters[5] = 50.950001; // Class 1 M
// Class 2
parameters[6] = 146.665985; // Class 2 mu
parameters[7] = 11.000000; // Class 2 L
parameters[8] = 50.900002; // Class 2 M
// Class 3
parameters[9] = 200.010132; // Class 3 mu
parameters[10] = 11.000000; // Class 3 L
parameters[11] = 50.950001; // Class 3 M
energyFidelity->SetParameters(parameters);
// Parameters are given to the different classes and the sampler, optimizer and
// energies are connected with the Markov filter.
OptimizerType::ParametersType param(1);
param.Fill(atof(argv[6]));
optimizer->SetParameters(param);
markovFilter->SetNumberOfClasses(nClass);
markovFilter->SetMaximumNumberOfIterations(atoi(argv[5]));
markovFilter->SetErrorTolerance(0.0);
markovFilter->SetLambda(atof(argv[4]));
markovFilter->SetNeighborhoodRadius(1);
markovFilter->SetEnergyRegularization(energyRegularization);
markovFilter->SetEnergyFidelity(energyFidelity);
markovFilter->SetOptimizer(optimizer);
markovFilter->SetSampler(sampler);
// The pipeline is connected. An itkRescaleIntensityImageFilter
// rescales the classified image before saving it.
markovFilter->SetInput(reader->GetOutput());
using RescaleType = itk::RescaleIntensityImageFilter<LabelledImageType, LabelledImageType>;
RescaleType::Pointer rescaleFilter = RescaleType::New();
rescaleFilter->SetOutputMinimum(0);
rescaleFilter->SetOutputMaximum(255);
rescaleFilter->SetInput(markovFilter->GetOutput());
writer->SetInput(rescaleFilter->GetOutput());
writer->Update();
// convert output image to color
using RGBPixelType = itk::RGBPixel<unsigned char>;
using RGBImageType = otb::Image<RGBPixelType, 2>;
using ColorMapFunctorType = itk::Functor::ScalarToRGBPixelFunctor<unsigned long>;
using ColorMapFilterType = itk::UnaryFunctorImageFilter<LabelledImageType, RGBImageType, ColorMapFunctorType>;
ColorMapFilterType::Pointer colormapper = ColorMapFilterType::New();
colormapper->SetInput(rescaleFilter->GetOutput());
// We can now create an image file writer and save the image.
using WriterRescaledType = otb::ImageFileWriter<RGBImageType>;
WriterRescaledType::Pointer writerRescaled = WriterRescaledType::New();
writerRescaled->SetFileName(outputRescaledImageFileName);
writerRescaled->SetInput(colormapper->GetOutput());
writerRescaled->Update();
// Figure~\ref{fig:MRF_CLASSIFICATION3} shows the output of the Markov Random
// Field classification into four classes using the
// Fisher-distribution as likelihood term.
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{QB_Suburb.eps}
// \includegraphics[width=0.44\textwidth]{MarkovRandomField3_color_value.eps}
// \itkcaption[MRF restoration]{Result of applying
// the \doxygen{otb}{MarkovRandomFieldFilter} to an extract from a PAN Quickbird
// image for classification into four classes using the Fisher-distribution as
// likehood term. From left to right : original image,
// classification.}
// \label{fig:MRF_CLASSIFICATION3}
// \end{figure}
return EXIT_SUCCESS;
}
|