1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
/*
* Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Example usage:
./RadiometricAttributesLabelMapFilterExample Input/qb_RoadExtract.tif \
Output/OBIARadiometricAttribute1.png \
Output/qb_ExtractRoad_Radiometry_pretty.jpg \
STATS::Band1::Mean \
0 \
0.5 \
16 \
16 \
50 \
1.0
*/
// This example shows the basic approach to perform object based analysis on a image.
// The input image is firstly segmented using the \doxygen{otb}{MeanShiftSegmentationFilter}
// Then each segmented region is converted to a Map of labeled objects.
// Afterwards the \doxygen{itk}{UnaryFunctorImageFilter} computes
// radiometric attributes for each object. In this example the NDVI is computed.
// The computed feature is passed to the \doxygen{otb}{BandsStatisticsAttributesLabelMapFilter}
// which computes statistics over the resulting band.
// Therefore, region's statistics over each band can be access by concatening
// STATS, the band number and the statistical attribute separated by colons. In this example
// the mean of the first band (which contains the NDVI) is access over all the regions
// with the attribute: 'STATS::Band1::Mean'.
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbMeanShiftSegmentationFilter.h"
#include "itkLabelImageToLabelMapFilter.h"
#include "otbShapeAttributesLabelMapFilter.h"
#include "otbBandsStatisticsAttributesLabelMapFilter.h"
#include "itkLabelMapToBinaryImageFilter.h"
#include "otbMultiChannelExtractROI.h"
#include "otbAttributesMapOpeningLabelMapFilter.h"
#include "otbVectorRescaleIntensityImageFilter.h"
#include "otbVegetationIndicesFunctor.h"
#include "itkUnaryFunctorImageFilter.h"
#include "otbImageToVectorImageCastFilter.h"
int main(int argc, char* argv[])
{
if (argc != 11)
{
std::cerr << "Usage: " << argv[0] << " reffname outfname outprettyfname attribute_name ";
std::cerr << "lowerThan tresh spatialRadius rangeRadius minregionsize scale" << std::endl;
return EXIT_FAILURE;
}
const char* reffname = argv[1];
const char* outfname = argv[2];
const char* outprettyfname = argv[3];
const char* attr = argv[4];
bool lowerThan = atoi(argv[5]);
double thresh = atof(argv[6]);
const unsigned int spatialRadius = atoi(argv[7]);
const double rangeRadius = atof(argv[8]);
const unsigned int minRegionSize = atoi(argv[9]);
/* const double scale = atoi(argv[10]); */
const unsigned int Dimension = 2;
// Labeled image type
using LabelType = unsigned int;
using MaskPixelType = unsigned char;
using PixelType = double;
using LabeledImageType = otb::Image<LabelType, Dimension>;
using MaskImageType = otb::Image<MaskPixelType, Dimension>;
using ImageType = otb::Image<PixelType, Dimension>;
using VectorImageType = otb::VectorImage<PixelType, Dimension>;
using OutputVectorImageType = otb::VectorImage<unsigned char, Dimension>;
using LabeledReaderType = otb::ImageFileReader<LabeledImageType>;
using ReaderType = otb::ImageFileReader<ImageType>;
using VectorReaderType = otb::ImageFileReader<VectorImageType>;
using WriterType = otb::ImageFileWriter<MaskImageType>;
using VectorWriterType = otb::ImageFileWriter<OutputVectorImageType>;
using VectorRescalerType = otb::VectorRescaleIntensityImageFilter<VectorImageType, OutputVectorImageType>;
using ChannelExtractorType = otb::MultiChannelExtractROI<unsigned char, unsigned char>;
// Label map typedef
using LabelObjectType = otb::AttributesMapLabelObject<LabelType, Dimension, double>;
using LabelMapType = itk::LabelMap<LabelObjectType>;
using LabelMapFilterType = itk::LabelImageToLabelMapFilter<LabeledImageType, LabelMapType>;
using ShapeLabelMapFilterType = otb::ShapeAttributesLabelMapFilter<LabelMapType>;
using RadiometricLabelMapFilterType = otb::BandsStatisticsAttributesLabelMapFilter<LabelMapType, VectorImageType>;
using OpeningLabelMapFilterType = otb::AttributesMapOpeningLabelMapFilter<LabelMapType>;
using LabelMapToBinaryImageFilterType = itk::LabelMapToBinaryImageFilter<LabelMapType, MaskImageType>;
using NDVIImageFilterType = itk::UnaryFunctorImageFilter<VectorImageType, ImageType, otb::Functor::NDVI<PixelType, PixelType>>;
using ImageToVectorImageCastFilterType = otb::ImageToVectorImageCastFilter<ImageType, VectorImageType>;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(reffname);
LabeledReaderType::Pointer lreader = LabeledReaderType::New();
lreader->SetFileName(reffname);
VectorReaderType::Pointer vreader = VectorReaderType::New();
vreader->SetFileName(reffname);
vreader->Update();
// Firstly, segment the input image by using the Mean Shift algorithm (see \ref{sec:MeanShift} for deeper
// explanations).
using FilterType = otb::MeanShiftSegmentationFilter<VectorImageType, LabeledImageType, VectorImageType>;
FilterType::Pointer filter = FilterType::New();
filter->SetSpatialBandwidth(spatialRadius);
filter->SetRangeBandwidth(rangeRadius);
filter->SetMinRegionSize(minRegionSize);
filter->SetThreshold(0.1);
filter->SetMaxIterationNumber(100);
// For non regression tests, set the number of threads to 1
// because MeanShift results depends on the number of threads
filter->SetNumberOfThreads(1);
// The \doxygen{otb}{MeanShiftSegmentationFilter} type is instantiated using the image
// types.
filter->SetInput(vreader->GetOutput());
// The \doxygen{itk}{LabelImageToLabelMapFilter} type is instantiated using the output
// of the \doxygen{otb}{MeanShiftSegmentationFilter}. This filter produces a labeled image
// where each segmented region has a unique label.
LabelMapFilterType::Pointer labelMapFilter = LabelMapFilterType::New();
labelMapFilter->SetInput(filter->GetLabelOutput());
labelMapFilter->SetBackgroundValue(itk::NumericTraits<LabelType>::min());
ShapeLabelMapFilterType::Pointer shapeLabelMapFilter = ShapeLabelMapFilterType::New();
shapeLabelMapFilter->SetInput(labelMapFilter->GetOutput());
// Instantiate the \doxygen{otb}{RadiometricLabelMapFilterType} to
// compute statistics of the feature image on each label object.
RadiometricLabelMapFilterType::Pointer radiometricLabelMapFilter = RadiometricLabelMapFilterType::New();
// Feature image could be one of the following image:
// \begin{itemize}
// \item GEMI
// \item NDVI
// \item IR
// \item IC
// \item IB
// \item NDWI2
// \item Intensity
// \end{itemize}
//
// Input image must be convert to the desired coefficient.
// In our case, statistics are computed on the NDVI coefficient on each label object.
NDVIImageFilterType::Pointer ndviImageFilter = NDVIImageFilterType::New();
ndviImageFilter->GetFunctor().SetBandIndex(CommonBandNames::RED, 3);
ndviImageFilter->GetFunctor().SetBandIndex(CommonBandNames::NIR, 4);
ndviImageFilter->SetInput(vreader->GetOutput());
ImageToVectorImageCastFilterType::Pointer ndviVectorImageFilter = ImageToVectorImageCastFilterType::New();
ndviVectorImageFilter->SetInput(ndviImageFilter->GetOutput());
radiometricLabelMapFilter->SetInput(shapeLabelMapFilter->GetOutput());
radiometricLabelMapFilter->SetFeatureImage(ndviVectorImageFilter->GetOutput());
// The \doxygen{otb}{AttributesMapOpeningLabelMapFilter} will perform the selection.
// There are three parameters. \code{AttributeName} specifies the radiometric attribute, \code{Lambda}
// controls the thresholding of the input and \code{ReverseOrdering} make this filter to remove the
// object with an attribute value greater than \code{Lambda} instead.
OpeningLabelMapFilterType::Pointer opening = OpeningLabelMapFilterType::New();
opening->SetInput(radiometricLabelMapFilter->GetOutput());
opening->SetAttributeName(attr);
opening->SetLambda(thresh);
opening->SetReverseOrdering(lowerThan);
opening->Update();
// Then, Label objects selected are transform in a Label Image using the
// \doxygen{itk}{LabelMapToLabelImageFilter}.
LabelMapToBinaryImageFilterType::Pointer labelMap2LabeledImage = LabelMapToBinaryImageFilterType::New();
labelMap2LabeledImage->SetInput(opening->GetOutput());
// And finally, we declare the writer and call its \code{Update()} method to
// trigger the full pipeline execution.
WriterType::Pointer writer = WriterType::New();
writer->SetFileName(outfname);
writer->SetInput(labelMap2LabeledImage->GetOutput());
writer->Update();
OutputVectorImageType::PixelType minimum, maximum;
minimum.SetSize(vreader->GetOutput()->GetNumberOfComponentsPerPixel());
maximum.SetSize(vreader->GetOutput()->GetNumberOfComponentsPerPixel());
minimum.Fill(0);
maximum.Fill(255);
VectorRescalerType::Pointer vr = VectorRescalerType::New();
vr->SetInput(filter->GetClusteredOutput());
vr->SetOutputMinimum(minimum);
vr->SetOutputMaximum(maximum);
vr->SetClampThreshold(0.01);
ChannelExtractorType::Pointer selecter = ChannelExtractorType::New();
selecter->SetInput(vr->GetOutput());
selecter->SetExtractionRegion(vreader->GetOutput()->GetLargestPossibleRegion());
selecter->SetChannel(3);
selecter->SetChannel(2);
selecter->SetChannel(1);
VectorWriterType::Pointer vectWriter = VectorWriterType::New();
vectWriter->SetFileName(outprettyfname);
vectWriter->SetInput(selecter->GetOutput());
vectWriter->Update();
return EXIT_SUCCESS;
}
// Figure~\ref{fig:RADIOMETRIC_LABEL_MAP_FILTER} shows the result of applying
// the object selection based on radiometric attributes.
// \begin{figure} [htbp]
// \center
// \includegraphics[width=0.44\textwidth]{qb_ExtractRoad_Radiometry_pretty.eps}
// \includegraphics[width=0.44\textwidth]{OBIARadiometricAttribute1.eps}
// \itkcaption[Object based extraction based on ]{Vegetation mask resulting from processing.}
// \label{fig:RADIOMETRIC_LABEL_MAP_FILTER}
// \end{figure}
|