1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
|
/*
* Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Example usage:
./LAIAndPROSAILToSensorResponse Input/LAIverySmallFSATSW.tif \
Input/Simu_label_LAI.png \
Input/Simu_mask_LAI_1.png \
Input/label-params-SO-2006-Level-2.txt \
Input/acqui-params.txt \
Input/Radiometry/Test/rep6S.dat \
Output/siTvLAIAndPROSAILToSensorResponse.tif \
5
*/
// The following code is an example of Sensor spectral response image generated using image of labeled objects image, objects properties (vegetation classes are
// handled using PROSAIL model, non-vegetation classes are characterized using \href{http://speclib.jpl.nasa.gov/}{Aster database} characteristics provided by a
// text file), acquisition parameters, sensor characteristics, and LAI (Leaf Area Index) image.
//
// Sensor RSR is modeled by 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) model \cite{Vermote1997}. Detailed information about 6S can be
// found \href{http://6s.ltdri.org/6S_code2_thiner_stuff/6S_Manual_Part_1.pdf}{here}.
//
// Let's look at the minimal code required to use this algorithm. First, the
// following headers must be included.
#include "otbImageFileWriter.h"
#include "otbImageFileReader.h"
#include "otbVectorDataFileReader.h"
#include "otbStandardWriterWatcher.h"
#include "itkImageRegionConstIterator.h"
#include "otbMultiChannelExtractROI.h"
#include "itkOrImageFilter.h"
#include "otbLeafParameters.h"
#include "otbReduceSpectralResponse.h"
#include "otbImageSimulationMethod.h"
#include "otbSpatialisationFilter.h"
#include "otbAttributesMapLabelObject.h"
#include "itkTernaryFunctorImageFilter.h"
#include "itkUnaryFunctorImageFilter.h"
#include "otbVectorDataToLabelMapWithAttributesFilter.h"
namespace otb
{
// \code{ImageUniqueValuesCalculator} class is defined here. Method \code{GetUniqueValues()} returns an array with all values contained in an image.
// This class is implemented and used to test if all labels in labeled image are present in label parameter file.
template <class TImage>
class ITK_EXPORT ImageUniqueValuesCalculator : public itk::Object
{
public:
using Self = ImageUniqueValuesCalculator<TImage>;
using Superclass = itk::Object;
using Pointer = itk::SmartPointer<Self>;
using ConstPointer = itk::SmartPointer<const Self>;
itkNewMacro(Self);
itkTypeMacro(ImageUniqueValuesCalculator, itk::Object);
itkStaticConstMacro(ImageDimension, unsigned int, TImage::ImageDimension);
using PixelType = typename TImage::PixelType;
using ImageType = TImage;
using ArrayType = std::vector<PixelType>;
using ImagePointer = typename ImageType::Pointer;
using ImageConstPointer = typename ImageType::ConstPointer;
virtual void SetImage(const ImageType* image)
{
if (m_Image != image)
{
m_Image = image;
this->Modified();
}
}
ArrayType GetUniqueValues() const
{
ArrayType uniqueValues;
if (!m_Image)
{
return uniqueValues;
}
itk::ImageRegionConstIterator<ImageType> it(m_Image, m_Image->GetRequestedRegion());
uniqueValues.push_back(it.Get());
++it;
while (!it.IsAtEnd())
{
if (std::find(uniqueValues.begin(), uniqueValues.end(), it.Get()) == uniqueValues.end())
{
uniqueValues.push_back(it.Get());
}
++it;
}
return uniqueValues;
}
protected:
ImageUniqueValuesCalculator()
{
m_Image = nullptr;
}
~ImageUniqueValuesCalculator() override
{
}
void PrintSelf(std::ostream& os, itk::Indent indent) const override
{
Superclass::PrintSelf(os, indent);
os << indent << "Image: " << m_Image.GetPointer() << std::endl;
}
private:
ImageUniqueValuesCalculator(const Self&) = delete;
void operator=(const Self&) = delete;
ImageConstPointer m_Image;
}; // class ImageUniqueValuesCalculator
namespace Functor
{
// \code{ProsailSimulatorFunctor} functor is defined here.
//
template <class TLAI, class TLabel, class TMask, class TOutput, class TLabelSpectra, class TLabelParameter, class TAcquistionParameter, class TSatRSR>
class ProsailSimulatorFunctor
{
public:
/** Standard class typedefs */
// \code{ProsailSimulatorFunctor} functor is defined here.
//
using LAIPixelType = TLAI;
using LabelPixelType = TLabel;
using MaskPixelType = TMask;
using OutputPixelType = TOutput;
using LabelSpectraType = TLabelSpectra;
using LabelParameterType = TLabelParameter;
using AcquistionParameterType = TAcquistionParameter;
using SatRSRType = TSatRSR;
using SatRSRPointerType = typename SatRSRType::Pointer;
using ProspectType = otb::ProspectModel;
using SailType = otb::SailModel;
using PrecisionType = double;
using PairType = std::pair<PrecisionType, PrecisionType>;
using VectorPairType = typename std::vector<PairType>;
using ResponseType = otb::SpectralResponse<PrecisionType, PrecisionType>;
using ResponsePointerType = ResponseType::Pointer;
using ReduceResponseType = otb::ReduceSpectralResponse<ResponseType, SatRSRType>;
using ReduceResponseTypePointerType = typename ReduceResponseType::Pointer;
// In this example spectra are generated form $400$ to $2400nm$. the number of simulated band is set by \code{SimNbBands} value.
//
static const unsigned int SimNbBands = 2000;
/** Constructor */
ProsailSimulatorFunctor()
{
m_SatRSR = SatRSRType::New();
m_InvertedMask = false;
}
/** Destructor */
~ProsailSimulatorFunctor(){};
void SetInvertedMask(bool ivm)
{
m_InvertedMask = ivm;
}
/** Implementation of the () operator*/
inline OutputPixelType operator()(const LAIPixelType& lai, const LabelPixelType& label, const MaskPixelType& mask)
{
// mask value is read to know if the pixel have to be calculated, it is set to 0 otherwise.
OutputPixelType pix;
pix.SetSize(m_SatRSR->GetNbBands());
if ((!mask && !m_InvertedMask) || (mask && m_InvertedMask))
{
for (unsigned int i = 0; i < m_SatRSR->GetNbBands(); i++)
pix[i] = static_cast<typename OutputPixelType::ValueType>(0);
return pix;
}
// Object reflectance \code{hxSpectrum} is calculated. If object label correspond to vegetation label then Prosail code is used, aster database is used
// otherwise.
VectorPairType hxSpectrum;
for (unsigned int i = 0; i < SimNbBands; i++)
{
PairType resp;
resp.first = static_cast<PrecisionType>((400.0 + i) / 1000);
hxSpectrum.push_back(resp);
}
// either the spectrum has to be simulated by Prospect+Sail
if (m_LabelParameters.find(label) != m_LabelParameters.end())
{
ProspectType::Pointer prospect = ProspectType::New();
prospect->SetInput(m_LabelParameters[label]);
SailType::Pointer sail = SailType::New();
sail->SetLAI(lai);
sail->SetAngl(m_AcquisitionParameters[std::string("Angl")]);
sail->SetPSoil(m_AcquisitionParameters[std::string("PSoil")]);
sail->SetSkyl(m_AcquisitionParameters[std::string("Skyl")]);
sail->SetHSpot(m_AcquisitionParameters[std::string("HSpot")]);
sail->SetTTS(m_AcquisitionParameters[std::string("TTS")]);
sail->SetTTO(m_AcquisitionParameters[std::string("TTO")]);
sail->SetPSI(m_AcquisitionParameters[std::string("PSI")]);
sail->SetReflectance(prospect->GetReflectance());
sail->SetTransmittance(prospect->GetTransmittance());
sail->Update();
for (unsigned int i = 0; i < SimNbBands; i++)
{
hxSpectrum[i].second = static_cast<typename OutputPixelType::ValueType>(sail->GetHemisphericalReflectance()->GetResponse()[i].second);
}
}
// or the spectra has been set from outside the functor (ex. bare soil, etc.)
else if (m_LabelSpectra.find(label) != m_LabelSpectra.end())
{
for (unsigned int i = 0; i < SimNbBands; i++)
hxSpectrum[i].second = static_cast<typename OutputPixelType::ValueType>(m_LabelSpectra[label][i]);
}
// or the class does not exist
else
{
for (unsigned int i = 0; i < SimNbBands; i++)
hxSpectrum[i].second = static_cast<typename OutputPixelType::ValueType>(0);
}
// Spectral response \code{aResponse} is set using \code{hxSpectrum}.
ResponseType::Pointer aResponse = ResponseType::New();
aResponse->SetResponse(hxSpectrum);
// Satellite RSR is initialized and set with \code{aResponse}. Reflectance
// mode is used in this case to take into account solar irradiance into
// spectral response reduction.
ReduceResponseTypePointerType reduceResponse = ReduceResponseType::New();
reduceResponse->SetInputSatRSR(m_SatRSR);
reduceResponse->SetInputSpectralResponse(aResponse);
reduceResponse->SetReflectanceMode(true);
reduceResponse->CalculateResponse();
VectorPairType reducedResponse = reduceResponse->GetReduceResponse()->GetResponse();
// \code{pix} value is returned for desired Satellite bands
for (unsigned int i = 0; i < m_SatRSR->GetNbBands(); i++)
pix[i] = static_cast<typename OutputPixelType::ValueType>(reducedResponse[i].second);
return pix;
}
bool operator!=(const ProsailSimulatorFunctor& other) const
{
return (m_AcquisitionParameters != other.m_AcquisitionParameters || m_LabelParameters != other.m_LabelParameters);
}
bool operator==(const ProsailSimulatorFunctor& other) const
{
return (m_AcquisitionParameters == other.m_AcquisitionParameters && m_LabelParameters == other.m_LabelParameters);
}
/** The spectra associated with labels are supposed to have the same
* sampling as a Prosail simulation, that is, 2000 bands starting at
* 400nm up to 2400 nm*/
inline void SetLabelSpectra(const TLabelSpectra& lSpectra)
{
m_LabelSpectra = lSpectra;
}
inline void SetLabelParameters(const TLabelParameter& lParameters)
{
m_LabelParameters = lParameters;
}
inline void SetAcquisitionParameters(const TAcquistionParameter& aParameters)
{
m_AcquisitionParameters = aParameters;
}
inline void SetRSR(const SatRSRPointerType rsr)
{
m_SatRSR = rsr;
}
inline SatRSRPointerType GetRSR() const
{
return m_SatRSR;
}
protected:
/** Spectra associated to labels*/
LabelSpectraType m_LabelSpectra;
/** Prospect+sail parameters to labels*/
LabelParameterType m_LabelParameters;
/** Prospect+sail acquisition parameters*/
AcquistionParameterType m_AcquisitionParameters;
/** Satellite Relative spectral response*/
SatRSRPointerType m_SatRSR;
/** Simulate pixels with mask != 0 ==> m_InvertedMask = false; */
bool m_InvertedMask;
};
} // namespace Functor
// \code{TernaryFunctorImageFilterWithNBands} class is defined here.
// This class inherits form \doxygen{itk}{TernaryFunctorImageFilter} with additional nuber of band parameters.
// It's implementation is done to process Label, LAI, and mask image with Simulation functor.
template <class TInputImage1, class TInputImage2, class TInputImage3, class TOutputImage, class TFunctor>
class ITK_EXPORT TernaryFunctorImageFilterWithNBands : public itk::TernaryFunctorImageFilter<TInputImage1, TInputImage2, TInputImage3, TOutputImage, TFunctor>
{
public:
using Self = TernaryFunctorImageFilterWithNBands<TInputImage1, TInputImage2, TInputImage3, TOutputImage, TFunctor>;
using Superclass = itk::TernaryFunctorImageFilter<TInputImage1, TInputImage2, TInputImage3, TOutputImage, TFunctor>;
using Pointer = itk::SmartPointer<Self>;
using ConstPointer = itk::SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Macro defining the type*/
itkTypeMacro(TernaryFunctorImageFilterWithNBands, SuperClass);
/** Accessors for the number of bands*/
itkSetMacro(NumberOfOutputBands, unsigned int);
itkGetConstMacro(NumberOfOutputBands, unsigned int);
protected:
TernaryFunctorImageFilterWithNBands()
{
}
~TernaryFunctorImageFilterWithNBands() override
{
}
void GenerateOutputInformation() override
{
Superclass::GenerateOutputInformation();
this->GetOutput()->SetNumberOfComponentsPerPixel(m_NumberOfOutputBands);
}
private:
TernaryFunctorImageFilterWithNBands(const Self&) = delete;
void operator=(const Self&) = delete;
unsigned int m_NumberOfOutputBands;
};
} // namespace otb
int main(int argc, char* argv[])
{
char* cmifname = nullptr;
if (argc != 10)
{
if (argc == 11) // cloud mask filename optional parameter
{
cmifname = argv[10];
}
else
{
std::cerr << "Wrong Parameters " << std::endl;
return EXIT_FAILURE;
}
}
char* laiifname = argv[1];
char* outfname = argv[2];
char* lifname = argv[3];
char* mifname = argv[4];
char* lpfname = argv[5];
char* apfname = argv[6];
char* rsfname = argv[7];
unsigned int nbBands = static_cast<unsigned int>(atoi(argv[8]));
char* rootPath = argv[9];
// Read the label parameter file. It is assumed to have the form
// label 1 Cab Car CBrown Cw Cm N --> for vegetation classes
// label 0 /path/to/spectra/file --> for other classes
// input images typedef are presented below. This example uses \code{double} LAI image, \code{binary} mask and
// cloud mask, and \code{integer} label image
//
using LAIPixelType = double;
using LabelType = unsigned short;
using MaskPixelType = unsigned short;
using OutputPixelType = float;
// Image typedef
using LAIImageType = otb::Image<LAIPixelType, 2>;
using LabelImageType = otb::Image<LabelType, 2>;
using MaskImageType = otb::Image<MaskPixelType, 2>;
using SimulatedImageType = otb::VectorImage<OutputPixelType, 2>;
// reader typedef
using LAIReaderType = otb::ImageFileReader<LAIImageType>;
using LabelReaderType = otb::ImageFileReader<LabelImageType>;
using MaskReaderType = otb::ImageFileReader<MaskImageType>;
// Leaf parameters typedef is defined.
using LeafParametersType = otb::LeafParameters;
using LeafParametersPointerType = LeafParametersType::Pointer;
using LabelParameterMapType = std::map<LabelType, LeafParametersPointerType>;
// Sensor spectral response typedef is defined
using PrecisionType = double;
using SpectraType = std::vector<PrecisionType>;
using SpectraParameterType = std::map<LabelType, SpectraType>;
// Acquisition response typedef is defined
using AcquistionParsType = std::map<std::string, double>;
// Satellite typedef is defined
using SatRSRType = otb::SatelliteRSR<PrecisionType, PrecisionType>;
// Filter type is the specific \code{TernaryFunctorImageFilterWithNBands} defined below with specific functor.
using SimuFunctorType = otb::Functor::ProsailSimulatorFunctor<LAIPixelType, LabelType, MaskPixelType, SimulatedImageType::PixelType, SpectraParameterType,
LabelParameterMapType, AcquistionParsType, SatRSRType>;
using SimulatorType = otb::TernaryFunctorImageFilterWithNBands<LAIImageType, LabelImageType, MaskImageType, SimulatedImageType, SimuFunctorType>;
// Read the acquisition parameter file which is like
// Angl val
// PSoil val
// Skyl val
// HSpot val
// TTS val
// TTO val
// PSI val
// Acquisition parameters are loaded using text file. A detailed definition of acquisition parameters can
// be found in class \doxygen{otb}{SailModel}.
AcquistionParsType acquistionPars;
acquistionPars[std::string("Angl")] = 0.0;
acquistionPars[std::string("PSoil")] = 0.0;
acquistionPars[std::string("Skyl")] = 0.0;
acquistionPars[std::string("HSpot")] = 0.0;
acquistionPars[std::string("TTS")] = 0.0;
acquistionPars[std::string("TTO")] = 0.0;
acquistionPars[std::string("PSI")] = 0.0;
std::ifstream acquistionParsFile;
try
{
acquistionParsFile.open(apfname);
}
catch (...)
{
std::cerr << "Could not open file " << apfname << std::endl;
return EXIT_FAILURE;
}
// unsigned int acPar = 0;
while (acquistionParsFile.good())
{
std::string line;
std::getline(acquistionParsFile, line);
std::stringstream ss(line);
std::string parName;
ss >> parName;
double parValue;
ss >> parValue;
acquistionPars[parName] = parValue;
}
acquistionParsFile.close();
// Label parameters are loaded using text file.
// Two type of object characteristic can be found. If label corresponds to vegetation class,
// then leaf parameters are loaded.
// A detailed definition of leaf parameters can be found in class \doxygen{otb}{LeafParameters} class.
// Otherwise object reflectance is generated from $400$ to $2400nm$ using \href{http://speclib.jpl.nasa.gov/}{Aster database}.
LabelParameterMapType labelParameters;
std::ifstream labelParsFile;
SpectraParameterType spectraParameters;
try
{
labelParsFile.open(lpfname, std::ifstream::in);
}
catch (...)
{
std::cerr << "Could not open file " << lpfname << std::endl;
return EXIT_FAILURE;
}
while (labelParsFile.good())
{
char fileLine[256];
labelParsFile.getline(fileLine, 256);
if (fileLine[0] != '#')
{
std::stringstream ss(fileLine);
unsigned short label;
ss >> label;
unsigned short paramsOrSpectra;
ss >> paramsOrSpectra;
if (paramsOrSpectra == 1)
{
double Cab;
ss >> Cab;
double Car;
ss >> Car;
double CBrown;
ss >> CBrown;
double Cw;
ss >> Cw;
double Cm;
ss >> Cm;
double N;
ss >> N;
LeafParametersType::Pointer leafParams = LeafParametersType::New();
leafParams->SetCab(Cab);
leafParams->SetCar(Car);
leafParams->SetCBrown(CBrown);
leafParams->SetCw(Cw);
leafParams->SetCm(Cm);
leafParams->SetN(N);
labelParameters[label] = leafParams;
}
else
{
std::string spectraFilename = rootPath;
ss >> spectraFilename;
spectraFilename = rootPath + spectraFilename;
using ResponseType = otb::SpectralResponse<PrecisionType, PrecisionType>;
ResponseType::Pointer resp = ResponseType::New();
// Coefficient 100 since Aster database is given in % reflectance
resp->Load(spectraFilename, 100.0);
SpectraType spec;
for (unsigned int i = 0; i < SimuFunctorType::SimNbBands; i++)
// Prosail starts at 400 and lambda in Aster DB is in micrometers
spec.push_back(static_cast<PrecisionType>((*resp)((i + 400.0) / 1000.0)));
spectraParameters[label] = spec;
}
}
}
labelParsFile.close();
// LAI image is read.
LAIReaderType::Pointer laiReader = LAIReaderType::New();
laiReader->SetFileName(laiifname);
laiReader->Update();
LAIImageType::Pointer laiImage = laiReader->GetOutput();
// Label image is then read. Label image is processed using \code{ImageUniqueValuesCalculator} in order to check if all the labels are present in the
// labelParameters file.
LabelReaderType::Pointer labelReader = LabelReaderType::New();
labelReader->SetFileName(lifname);
labelReader->Update();
LabelImageType::Pointer labelImage = labelReader->GetOutput();
using UniqueCalculatorType = otb::ImageUniqueValuesCalculator<LabelImageType>;
UniqueCalculatorType::Pointer uniqueCalculator = UniqueCalculatorType::New();
uniqueCalculator->SetImage(labelImage);
UniqueCalculatorType::ArrayType uniqueVals = uniqueCalculator->GetUniqueValues();
if (uniqueVals.empty())
{
std::cerr << "No label value found!" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Labels are " << std::endl;
UniqueCalculatorType::ArrayType::const_iterator uvIt = uniqueVals.begin();
while (uvIt != uniqueVals.end())
{
std::cout << (*uvIt) << ", ";
++uvIt;
}
std::cout << std::endl;
uvIt = uniqueVals.begin();
while (uvIt != uniqueVals.end())
{
if (labelParameters.find(static_cast<LabelType>(*uvIt)) == labelParameters.end() &&
spectraParameters.find(static_cast<LabelType>(*uvIt)) == spectraParameters.end() && static_cast<LabelType>(*uvIt) != 0)
{
std::cout << "label " << (*uvIt) << " not found in " << lpfname << std::endl;
return EXIT_FAILURE;
}
++uvIt;
}
// Mask image is read. If cloud mask is filename is given, a new mask image is generated with masks concatenation.
MaskReaderType::Pointer miReader = MaskReaderType::New();
miReader->SetFileName(mifname);
miReader->UpdateOutputInformation();
MaskImageType::Pointer maskImage = miReader->GetOutput();
if (cmifname != nullptr)
{
MaskReaderType::Pointer cmiReader = MaskReaderType::New();
cmiReader->SetFileName(cmifname);
cmiReader->UpdateOutputInformation();
using OrType = itk::OrImageFilter<MaskImageType, MaskImageType, MaskImageType>;
OrType::Pointer orfilter = OrType::New();
orfilter->SetInput1(miReader->GetOutput());
orfilter->SetInput2(cmiReader->GetOutput());
orfilter->Update();
maskImage = orfilter->GetOutput();
}
// A test is done. All images must have the same size.
if (laiImage->GetLargestPossibleRegion().GetSize()[0] != labelImage->GetLargestPossibleRegion().GetSize()[0] ||
laiImage->GetLargestPossibleRegion().GetSize()[1] != labelImage->GetLargestPossibleRegion().GetSize()[1] ||
laiImage->GetLargestPossibleRegion().GetSize()[0] != maskImage->GetLargestPossibleRegion().GetSize()[0] ||
laiImage->GetLargestPossibleRegion().GetSize()[1] != maskImage->GetLargestPossibleRegion().GetSize()[1])
{
std::cerr << "Image of labels, mask and LAI image must have the same size" << std::endl;
return EXIT_FAILURE;
}
// Satellite RSR (Reduced Spectral Response) is defined using filename and band number given by command line arguments.
SatRSRType::Pointer satRSR = SatRSRType::New();
satRSR->SetNbBands(nbBands);
satRSR->SetSortBands(false);
satRSR->Load(rsfname);
for (unsigned int i = 0; i < nbBands; ++i)
std::cout << i << " " << (satRSR->GetRSR())[i]->GetInterval().first << " " << (satRSR->GetRSR())[i]->GetInterval().second << std::endl;
// At this step all initialization have been done. The next step is to implement and initialize simulation functor \code{ProsailSimulatorFunctor}.
SimuFunctorType simuFunctor;
simuFunctor.SetLabelParameters(labelParameters);
simuFunctor.SetLabelSpectra(spectraParameters);
simuFunctor.SetAcquisitionParameters(acquistionPars);
simuFunctor.SetRSR(satRSR);
simuFunctor.SetInvertedMask(true);
// Inputs and Functor are plugged to simulator filter.
SimulatorType::Pointer simulator = SimulatorType::New();
simulator->SetInput1(laiImage);
simulator->SetInput2(labelImage);
simulator->SetInput3(maskImage);
simulator->SetFunctor(simuFunctor);
simulator->SetNumberOfOutputBands(nbBands);
// The invocation of the \code{Update()} method triggers the
// execution of the pipeline.
simulator->Update();
// Write output image to disk
using WriterType = otb::ImageFileWriter<SimulatedImageType>;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName(outfname);
writer->SetInput(simulator->GetOutput());
// writer->SetBufferNumberOfLinesDivisions(nbStreams);
otb::StandardWriterWatcher watcher(writer, simulator, "Simulation");
writer->Update();
return EXIT_SUCCESS;
}
|