1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
/*
* Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Example usage:
./LAIFromNDVIImageTransform Input/verySmallFSATSW.tif \
Output/siTvLAIFromNDVIImageTransformExampleTest_verySmallFSATSW.tif \
Output/verySmallFSATSW_visu.png \
Output/siTvLAIFromNDVIImageTransformExampleTest_verySmallFSATSW_visu.png \
1 \
4
*/
//
// This example presents a way to generate LAI (Leaf Area Index) image using formula dedicated to Formosat2.
// LAI Image is used as an input in Image Simulation process.
//
// Let's look at the minimal code required to use this algorithm. First, the
// following headers must be included.
#include "itkUnaryFunctorImageFilter.h"
#include "otbVegetationIndicesFunctor.h"
#include "otbImage.h"
#include "otbVectorImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
int main(int argc, char* argv[])
{
if (argc != 7)
{
std::cerr << "Wrong Parameters " << std::endl;
return EXIT_FAILURE;
}
const unsigned int Dimension = 2;
using InputImageType = otb::VectorImage<double, Dimension>;
using OutputImageType = otb::Image<double, Dimension>;
using ImageVisuType = otb::Image<unsigned char, Dimension>;
using ReaderType = otb::ImageFileReader<InputImageType>;
using WriterType = otb::ImageFileWriter<OutputImageType>;
using VisuWriterType = otb::ImageFileWriter<ImageVisuType>;
using InWriterType = otb::ImageFileWriter<InputImageType>;
// Filter type is a generic \doxygen{itk}{UnaryFunctorImageFilter} using Formosat2 specific LAI
// \doxygen{otb}{LAIFromNDVIFormosat2Functor}.
using FunctorType = otb::Functor::LAIFromNDVIFormosat2Functor<InputImageType::InternalPixelType, OutputImageType::PixelType>;
using LAIFRomNDVIImageFilterType = itk::UnaryFunctorImageFilter<InputImageType, OutputImageType, FunctorType>;
// Instantiating object
// Next the filter is created by invoking the \code{New()}~method and
// assigning the result to a \doxygen{itk}{SmartPointer}.
LAIFRomNDVIImageFilterType::Pointer filter = LAIFRomNDVIImageFilterType::New();
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
InWriterType::Pointer inWriter = InWriterType::New();
VisuWriterType::Pointer visuWriter = VisuWriterType::New();
char* InputName = argv[1];
char* OutputName1 = argv[2];
char* OutputName2 = argv[3];
char* OutputName3 = argv[4];
reader->SetFileName(InputName);
// filter input is set with input image
//
filter->SetInput(reader->GetOutput());
// then red and nir channels index are set using \code{SetRedIndex()} and \code{SetNIRIndex()}
//
unsigned int redChannel = static_cast<unsigned int>(atoi(argv[5]));
unsigned int nirChannel = static_cast<unsigned int>(atoi(argv[6]));
filter->GetFunctor().SetBandIndex(CommonBandNames::RED, redChannel);
filter->GetFunctor().SetBandIndex(CommonBandNames::NIR, nirChannel);
// The invocation of the \code{Update()} method triggers the
// execution of the pipeline.
filter->Update();
writer->SetFileName(OutputName1);
writer->SetInput(filter->GetOutput());
writer->Update();
// rescale data
inWriter->SetFileName(OutputName2);
// typedef itk::RescaleIntensityImageFilter<InputImageType,
// OutputImageType> RescalerType;
// RescalerType::Pointer rescaler = RescalerType::New();
// rescaler->SetInput(reader->GetOutput());
// rescaler->SetOutputMinimum(0);
// rescaler->SetOutputMaximum(255);
inWriter->SetInput(reader->GetOutput());
inWriter->Update();
visuWriter->SetFileName(OutputName3);
using RescalerTypeOut = itk::RescaleIntensityImageFilter<OutputImageType, ImageVisuType>;
RescalerTypeOut::Pointer rescaler = RescalerTypeOut::New();
rescaler->SetInput(filter->GetOutput());
rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);
visuWriter->SetInput(rescaler->GetOutput());
visuWriter->Update();
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{verySmallFSATSW_visu.eps}
// \includegraphics[width=0.44\textwidth]{siTvLAIFromNDVIImageTransformExampleTest_verySmallFSATSW_visu.eps}
// \itkcaption[LAIFromNDVIImageTransform Filter]{LAI generation \emph{(right)} from NDVI applied on Formosat 2 Image \emph{(left)} .}
// \label{fig:LAIFromNDVIImageTransform}
// \end{figure}
//
// Figure \ref{fig:LAIFromNDVIImageTransform} illustrates the LAI generation using Formosat 2 data.
//
return EXIT_SUCCESS;
}
|