File: ProsailModel.cxx

package info (click to toggle)
otb 7.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,005,476 kB
  • sloc: cpp: 270,143; xml: 128,722; ansic: 4,367; sh: 1,768; python: 1,084; perl: 92; makefile: 72
file content (188 lines) | stat: -rw-r--r-- 6,546 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
/*
 * Copyright (C) 1999-2011 Insight Software Consortium
 * Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


/* Example usage:
./ProsailModel 30.0 10.0 0.0 0.015 0.009 1.2 2 50 1 70 0.2 30 0 0 Output/SailReflTest.txt
*/

//
// This example presents how to use PROSAIL (Prospect + Sail) model to generate
// viewing reflectance from leaf parameters, vegetation, and viewing parameters.
// Output can be used to simulate image for example.
//
// Let's look at the minimal code required to use this algorithm. First, the
// following headers must be included.

#include "otbSailModel.h"
#include "otbProspectModel.h"
#include "otbMacro.h"

#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"

int main(int argc, char* argv[])
{
  if (argc < 16)
  {
    std::cerr << "Missing Parameters " << std::endl;
    return EXIT_FAILURE;
  }

  char* OutputName = argv[15];
  //  We now define leaf parameters, which characterize vegetation composition.

  using LeafParametersType = otb::LeafParameters;


  //  Next the parameters variable is created by invoking the \code{New()}~method and
  //  assigning the result to a \doxygen{itk}{SmartPointer}.

  LeafParametersType::Pointer leafParams = LeafParametersType::New();


  //  Leaf characteristics is then set.
  //  Input parameters are :
  //  \begin{itemize}
  //  \item Chlorophyll concentration (Cab) in $\mu g/cm^2$.
  //  \item Carotenoid concentration (Car) in $\mu g/cm^2$.
  //  \item Brown pigment content (CBrown) in arbitrary unit.
  //  \item Water thickness EWT (Cw) in $cm$.
  //  \item Dry matter content LMA (Cm) in $g/cm^2$.
  //  \item Leaf structure parameter (N).
  //  \end{itemize}

  double Cab    = static_cast<double>(atof(argv[1]));
  double Car    = static_cast<double>(atof(argv[2]));
  double CBrown = static_cast<double>(atof(argv[3]));
  double Cw     = static_cast<double>(atof(argv[4]));
  double Cm     = static_cast<double>(atof(argv[5]));
  double N      = static_cast<double>(atof(argv[6]));

  leafParams->SetCab(Cab);
  leafParams->SetCar(Car);
  leafParams->SetCBrown(CBrown);
  leafParams->SetCw(Cw);
  leafParams->SetCm(Cm);
  leafParams->SetN(N);

  //  Leaf parameters are used as prospect input

  using ProspectType             = otb::ProspectModel;
  ProspectType::Pointer prospect = ProspectType::New();

  prospect->SetInput(leafParams);

  //  Now we use SAIL model to generate transmitance and reflectance spectrum. SAIL model is created by invoking
  //  the \code{New()} method and
  //  assigning the result to a \doxygen{itk}{SmartPointer}.


  //  sail input parameters are :
  //  \begin{itemize}
  //  \item leaf area index (LAI).
  //  \item average leaf angle (Angle) in $\deg$.
  //  \item soil coefficient (PSoil).
  //  \item diffuse/direct radiation (Skyl).
  //  \item hot spot (HSpot).
  //  \item solar zenith angle (TTS) in $\deg$.
  //  \item observer zenith angle (TTO) in $\deg$.
  //  \item azimuth (PSI) in $\deg$.
  //  \end{itemize}


  double LAI   = static_cast<double>(atof(argv[7]));
  double Angle = static_cast<double>(atof(argv[8]));
  double PSoil = static_cast<double>(atof(argv[9]));
  double Skyl  = static_cast<double>(atof(argv[10]));
  double HSpot = static_cast<double>(atof(argv[11]));
  double TTS   = static_cast<double>(atof(argv[12]));
  double TTO   = static_cast<double>(atof(argv[13]));
  double PSI   = static_cast<double>(atof(argv[14]));

  using SailType = otb::SailModel;

  SailType::Pointer sail = SailType::New();

  sail->SetLAI(LAI);
  sail->SetAngl(Angle);
  sail->SetPSoil(PSoil);
  sail->SetSkyl(Skyl);
  sail->SetHSpot(HSpot);
  sail->SetTTS(TTS);
  sail->SetTTO(TTO);
  sail->SetPSI(PSI);

  //  Reflectance and Transmittance  are set with prospect output.

  sail->SetReflectance(prospect->GetReflectance());
  sail->SetTransmittance(prospect->GetTransmittance());


  //  The invocation of the \code{Update()} method triggers the
  //  execution of the pipeline.

  sail->Update();

  //  \emph{GetViewingReflectance} method provides viewing reflectance vector (size $Nx2$, where $N$ is the number of sampled wavelength values, columns
  //  corresponds respectively to wavelength and viewing reflectance) by calling \emph{GetResponse}. \emph{GetHemisphericalReflectance} method provides
  //  hemispherical reflectance vector (size $Nx2$, where $N$ is the number ofsampled wavelength values, columns corresponds to wavelength and hemispherical
  //  reflectance) by calling \emph{GetResponse}.
  //
  // Note that PROSAIL simulation are done for 2100 samples starting from 400nm up to 2500nm

  for (unsigned int i = 0; i < sail->GetViewingReflectance()->Size(); ++i)
  {
    otbLogMacro(Debug, << "wavelength  : " << sail->GetViewingReflectance()->GetResponse()[i].first << ". Viewing reflectance "
                       << sail->GetViewingReflectance()->GetResponse()[i].second << ". Hemispherical reflectance "
                       << sail->GetHemisphericalReflectance()->GetResponse()[i].second);
  }

  std::ofstream outputFile(OutputName, std::ios::out);
  for (unsigned int i = 0; i < sail->GetHemisphericalReflectance()->Size(); ++i)
  {
    outputFile << sail->GetViewingReflectance()->GetResponse()[i].second << " ";
    outputFile << sail->GetHemisphericalReflectance()->GetResponse()[i].second << std::endl;
  }

  //  here you can found example parameters :
  //  \begin{itemize}
  //  \item Cab 30.0
  //  \item Car 10.0
  //  \item CBrown 0.0
  //  \item Cw 0.015
  //  \item Cm 0.009
  //  \item N 1.2
  //  \item LAI 2
  //  \item Angle 50
  //  \item PSoil 1
  //  \item Skyl 70
  //  \item HSpot 0.2
  //  \item TTS 30
  //  \item TTO 0
  //  \item PSI 0
  //  \end{itemize}
  //
  //  More information and data about leaf properties can be found at \emph{St\'{e}phane Jacquemoud}
  //  \href{http://teledetection.ipgp.jussieu.fr/opticleaf/}{OPTICLEAF} website.

  return EXIT_SUCCESS;
}