1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
/*
* Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "otbWrapperApplication.h"
#include "otbWrapperApplicationFactory.h"
#include "itkUnaryFunctorImageFilter.h"
#include "otbChangeLabelImageFilter.h"
#include "otbStandardWriterWatcher.h"
#include "otbStatisticsXMLFileReader.h"
#include "otbShiftScaleVectorImageFilter.h"
#include "otbImageClassificationFilter.h"
#include "otbMultiToMonoChannelExtractROI.h"
#include "otbImageToVectorImageCastFilter.h"
#include "otbMachineLearningModelFactory.h"
namespace otb
{
namespace Functor
{
/**
* simple affine function : y = ax+b
*/
template <class TInput, class TOutput>
class AffineFunctor
{
public:
typedef double InternalType;
void SetA(InternalType a)
{
m_A = a;
}
void SetB(InternalType b)
{
m_B = b;
}
inline TOutput operator()(const TInput& x) const
{
return static_cast<TOutput>(static_cast<InternalType>(x) * m_A + m_B);
}
private:
InternalType m_A = 1.0;
InternalType m_B = 0.0;
};
}
namespace Wrapper
{
class ImageRegression : public Application
{
public:
/** Standard class typedefs. */
typedef ImageRegression Self;
typedef Application Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
/** Standard macro */
itkNewMacro(Self);
itkTypeMacro(ImageRegression, otb::Application);
/** Filters typedef */
typedef UInt8ImageType MaskImageType;
typedef itk::VariableLengthVector<FloatVectorImageType::InternalPixelType> MeasurementType;
typedef otb::StatisticsXMLFileReader<MeasurementType> StatisticsReader;
typedef otb::ShiftScaleVectorImageFilter<FloatVectorImageType, FloatVectorImageType> RescalerType;
typedef itk::UnaryFunctorImageFilter<FloatImageType, FloatImageType, otb::Functor::AffineFunctor<float, float>> OutputRescalerType;
typedef otb::ImageClassificationFilter<FloatVectorImageType, FloatImageType, MaskImageType> ClassificationFilterType;
typedef ClassificationFilterType::Pointer ClassificationFilterPointerType;
typedef ClassificationFilterType::ModelType ModelType;
typedef ModelType::Pointer ModelPointerType;
typedef ClassificationFilterType::ValueType ValueType;
typedef ClassificationFilterType::LabelType LabelType;
typedef otb::MachineLearningModelFactory<ValueType, LabelType> MachineLearningModelFactoryType;
protected:
~ImageRegression() override
{
MachineLearningModelFactoryType::CleanFactories();
}
private:
void DoInit() override
{
SetName("ImageRegression");
SetDescription("Performs a prediction of the input image according to a regression model file.");
// Documentation
SetDocLongDescription(
"This application predict output values from an input "
"image, based on a regression model file produced either by "
"TrainVectorRegression or TrainImagesRegression. "
"Pixels of the output image will contain the predicted values from "
"the regression model (single band). The input pixels "
"can be optionally centered and reduced according "
"to the statistics file produced by the "
"ComputeImagesStatistics application. An optional "
"input mask can be provided, in which case only "
"input image pixels whose corresponding mask value "
"is greater than zero will be processed. The remaining "
"of pixels will be given the value zero in the output "
"image.");
SetDocLimitations(
"The input image must contain the feature bands used for "
"the model training. "
"If a statistics file was used during training by the "
"TrainRegression, it is mandatory to use the same "
"statistics file for prediction. If an input mask is "
"used, its size must match the input image size.");
SetDocAuthors("OTB-Team");
SetDocSeeAlso("TrainImagesRegression, TrainVectorRegression, VectorRegression, ComputeImagesStatistics");
AddDocTag(Tags::Learning);
AddParameter(ParameterType_InputImage, "in", "Input Image");
SetParameterDescription("in", "The input image to predict.");
AddParameter(ParameterType_InputImage, "mask", "Input Mask");
SetParameterDescription("mask",
"The mask restrict the "
"classification of the input image to the area where mask pixel values "
"are greater than zero.");
MandatoryOff("mask");
AddParameter(ParameterType_InputFilename, "model", "Model file");
SetParameterDescription("model",
"A regression model file (produced either by "
"TrainVectorRegression application or the TrainImagesRegression application).");
AddParameter(ParameterType_InputFilename, "imstat", "Statistics file");
SetParameterDescription("imstat",
"An XML file containing mean and standard"
" deviation to center and reduce samples before prediction "
"(produced by the ComputeImagesStatistics application). If this file contains "
"one more band than the sample size, the last stat of the last band will be"
"applied to expand the output predicted value.");
MandatoryOff("imstat");
AddParameter(ParameterType_OutputImage, "out", "Output Image");
SetParameterDescription("out", "Output image containing predicted values");
AddRAMParameter();
// Doc example parameter settings
SetDocExampleParameterValue("in", "QB_1_ortho.tif");
SetDocExampleParameterValue("imstat", "EstimateImageStatisticsQB1.xml");
SetDocExampleParameterValue("model", "clsvmModelQB1.svm");
SetDocExampleParameterValue("out", "clLabeledImageQB1.tif");
SetOfficialDocLink();
}
void DoUpdateParameters() override
{
// Nothing to do here : all parameters are independent
}
void DoExecute() override
{
// Load input image
auto inImage = GetParameterImage("in");
inImage->UpdateOutputInformation();
unsigned int nbFeatures = inImage->GetNumberOfComponentsPerPixel();
// Load svm model
otbAppLogINFO("Loading model");
auto model = MachineLearningModelFactoryType::CreateMachineLearningModel(GetParameterString("model"), MachineLearningModelFactoryType::ReadMode);
if (model.IsNull())
{
otbAppLogFATAL(<< "Error when loading model " << GetParameterString("model") << " : unsupported model type");
}
model->Load(GetParameterString("model"));
model->SetRegressionMode(true);
otbAppLogINFO("Model loaded");
// Classify
auto classificationFilter = ClassificationFilterType::New();
classificationFilter->SetModel(model);
auto outputImage = classificationFilter->GetOutput();
RescalerType::Pointer rescaler;
OutputRescalerType::Pointer outRescaler;
// Normalize input image if asked
if (IsParameterEnabled("imstat"))
{
otbAppLogINFO("Input image normalization activated.");
// Normalize input image (optional)
auto statisticsReader = StatisticsReader::New();
MeasurementType meanMeasurementVector;
MeasurementType stddevMeasurementVector;
rescaler = RescalerType::New();
// Load input image statistics
statisticsReader->SetFileName(GetParameterString("imstat"));
meanMeasurementVector = statisticsReader->GetStatisticVectorByName("mean");
stddevMeasurementVector = statisticsReader->GetStatisticVectorByName("stddev");
otbAppLogINFO("mean used: " << meanMeasurementVector);
otbAppLogINFO("standard deviation used: " << stddevMeasurementVector);
if (meanMeasurementVector.Size() == nbFeatures + 1)
{
double outMean = meanMeasurementVector[nbFeatures];
double outStdDev = stddevMeasurementVector[nbFeatures];
meanMeasurementVector.SetSize(nbFeatures, false);
stddevMeasurementVector.SetSize(nbFeatures, false);
outRescaler = OutputRescalerType::New();
outRescaler->SetInput(classificationFilter->GetOutput());
outRescaler->GetFunctor().SetA(outStdDev);
outRescaler->GetFunctor().SetB(outMean);
outputImage = outRescaler->GetOutput();
}
else if (meanMeasurementVector.Size() != nbFeatures)
{
otbAppLogFATAL("Wrong number of components in statistics file : " << meanMeasurementVector.Size());
}
// Rescale vector image
rescaler->SetScale(stddevMeasurementVector);
rescaler->SetShift(meanMeasurementVector);
rescaler->SetInput(inImage);
classificationFilter->SetInput(rescaler->GetOutput());
}
else
{
otbAppLogINFO("Input image normalization deactivated.");
classificationFilter->SetInput(inImage);
}
if (IsParameterEnabled("mask"))
{
otbAppLogINFO("Using input mask");
// Load mask image and cast into LabeledImageType
auto inMask = GetParameterUInt8Image("mask");
classificationFilter->SetInputMask(inMask);
}
SetParameterOutputImage<FloatImageType>("out", outputImage);
RegisterPipeline();
}
};
}
}
OTB_APPLICATION_EXPORT(otb::Wrapper::ImageRegression)
|