File: otbImageRegression.cxx

package info (click to toggle)
otb 7.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,005,476 kB
  • sloc: cpp: 270,143; xml: 128,722; ansic: 4,367; sh: 1,768; python: 1,084; perl: 92; makefile: 72
file content (270 lines) | stat: -rw-r--r-- 10,035 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/*
 * Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "otbWrapperApplication.h"
#include "otbWrapperApplicationFactory.h"

#include "itkUnaryFunctorImageFilter.h"
#include "otbChangeLabelImageFilter.h"
#include "otbStandardWriterWatcher.h"
#include "otbStatisticsXMLFileReader.h"
#include "otbShiftScaleVectorImageFilter.h"
#include "otbImageClassificationFilter.h"
#include "otbMultiToMonoChannelExtractROI.h"
#include "otbImageToVectorImageCastFilter.h"
#include "otbMachineLearningModelFactory.h"

namespace otb
{
namespace Functor
{
/**
 * simple affine function : y = ax+b
 */
template <class TInput, class TOutput>
class AffineFunctor
{
public:
  typedef double InternalType;

  void SetA(InternalType a)
  {
    m_A = a;
  }

  void SetB(InternalType b)
  {
    m_B = b;
  }

  inline TOutput operator()(const TInput& x) const
  {
    return static_cast<TOutput>(static_cast<InternalType>(x) * m_A + m_B);
  }

private:
  InternalType m_A = 1.0;
  InternalType m_B = 0.0;
};
}

namespace Wrapper
{

class ImageRegression : public Application
{
public:
  /** Standard class typedefs. */
  typedef ImageRegression               Self;
  typedef Application                   Superclass;
  typedef itk::SmartPointer<Self>       Pointer;
  typedef itk::SmartPointer<const Self> ConstPointer;

  /** Standard macro */
  itkNewMacro(Self);

  itkTypeMacro(ImageRegression, otb::Application);

  /** Filters typedef */
  typedef UInt8ImageType                                                     MaskImageType;
  typedef itk::VariableLengthVector<FloatVectorImageType::InternalPixelType> MeasurementType;
  typedef otb::StatisticsXMLFileReader<MeasurementType>                      StatisticsReader;
  typedef otb::ShiftScaleVectorImageFilter<FloatVectorImageType, FloatVectorImageType> RescalerType;
  typedef itk::UnaryFunctorImageFilter<FloatImageType, FloatImageType, otb::Functor::AffineFunctor<float, float>> OutputRescalerType;
  typedef otb::ImageClassificationFilter<FloatVectorImageType, FloatImageType, MaskImageType> ClassificationFilterType;
  typedef ClassificationFilterType::Pointer   ClassificationFilterPointerType;
  typedef ClassificationFilterType::ModelType ModelType;
  typedef ModelType::Pointer                  ModelPointerType;
  typedef ClassificationFilterType::ValueType ValueType;
  typedef ClassificationFilterType::LabelType LabelType;
  typedef otb::MachineLearningModelFactory<ValueType, LabelType> MachineLearningModelFactoryType;

protected:
  ~ImageRegression() override
  {
    MachineLearningModelFactoryType::CleanFactories();
  }

private:
  void DoInit() override
  {
    SetName("ImageRegression");
    SetDescription("Performs a prediction of the input image according to a regression model file.");

    // Documentation
    SetDocLongDescription(
        "This application predict output values from an input "
        "image, based on a regression model file produced either by "
        "TrainVectorRegression or TrainImagesRegression. "
        "Pixels of the output image will contain the predicted values from "
        "the regression model (single band). The input pixels "
        "can be optionally centered and reduced according "
        "to the statistics file produced by the "
        "ComputeImagesStatistics application. An optional "
        "input mask can be provided, in which case only "
        "input image pixels whose corresponding mask value "
        "is greater than zero will be processed. The remaining "
        "of pixels will be given the value zero in the output "
        "image.");

    SetDocLimitations(
        "The input image must contain the feature bands used for "
        "the model training. "
        "If a statistics file was used during training by the "
        "TrainRegression, it is mandatory to use the same "
        "statistics file for prediction. If an input mask is "
        "used, its size must match the input image size.");
    SetDocAuthors("OTB-Team");
    SetDocSeeAlso("TrainImagesRegression, TrainVectorRegression, VectorRegression, ComputeImagesStatistics");

    AddDocTag(Tags::Learning);

    AddParameter(ParameterType_InputImage, "in", "Input Image");
    SetParameterDescription("in", "The input image to predict.");

    AddParameter(ParameterType_InputImage, "mask", "Input Mask");
    SetParameterDescription("mask",
                            "The mask restrict the "
                            "classification of the input image to the area where mask pixel values "
                            "are greater than zero.");
    MandatoryOff("mask");

    AddParameter(ParameterType_InputFilename, "model", "Model file");
    SetParameterDescription("model",
                            "A regression model file (produced either by "
                            "TrainVectorRegression application or the TrainImagesRegression application).");

    AddParameter(ParameterType_InputFilename, "imstat", "Statistics file");
    SetParameterDescription("imstat",
                            "An XML file containing mean and standard"
                            " deviation to center and reduce samples before prediction "
                            "(produced by the ComputeImagesStatistics application). If this file contains "
                            "one more band than the sample size, the last stat of the last band will be"
                            "applied to expand the output predicted value.");
    MandatoryOff("imstat");

    AddParameter(ParameterType_OutputImage, "out", "Output Image");
    SetParameterDescription("out", "Output image containing predicted values");

    AddRAMParameter();

    // Doc example parameter settings
    SetDocExampleParameterValue("in", "QB_1_ortho.tif");
    SetDocExampleParameterValue("imstat", "EstimateImageStatisticsQB1.xml");
    SetDocExampleParameterValue("model", "clsvmModelQB1.svm");
    SetDocExampleParameterValue("out", "clLabeledImageQB1.tif");

    SetOfficialDocLink();
  }

  void DoUpdateParameters() override
  {
    // Nothing to do here : all parameters are independent
  }

  void DoExecute() override
  {
    // Load input image
    auto inImage = GetParameterImage("in");
    inImage->UpdateOutputInformation();
    unsigned int nbFeatures = inImage->GetNumberOfComponentsPerPixel();

    // Load svm model
    otbAppLogINFO("Loading model");
    auto model = MachineLearningModelFactoryType::CreateMachineLearningModel(GetParameterString("model"), MachineLearningModelFactoryType::ReadMode);

    if (model.IsNull())
    {
      otbAppLogFATAL(<< "Error when loading model " << GetParameterString("model") << " : unsupported model type");
    }

    model->Load(GetParameterString("model"));
    model->SetRegressionMode(true);
    otbAppLogINFO("Model loaded");

    // Classify
    auto classificationFilter = ClassificationFilterType::New();
    classificationFilter->SetModel(model);

    auto outputImage = classificationFilter->GetOutput();

    RescalerType::Pointer       rescaler;
    OutputRescalerType::Pointer outRescaler;
    // Normalize input image if asked
    if (IsParameterEnabled("imstat"))
    {
      otbAppLogINFO("Input image normalization activated.");
      // Normalize input image (optional)
      auto            statisticsReader = StatisticsReader::New();
      MeasurementType meanMeasurementVector;
      MeasurementType stddevMeasurementVector;
      rescaler = RescalerType::New();
      // Load input image statistics
      statisticsReader->SetFileName(GetParameterString("imstat"));
      meanMeasurementVector   = statisticsReader->GetStatisticVectorByName("mean");
      stddevMeasurementVector = statisticsReader->GetStatisticVectorByName("stddev");
      otbAppLogINFO("mean used: " << meanMeasurementVector);
      otbAppLogINFO("standard deviation used: " << stddevMeasurementVector);
      if (meanMeasurementVector.Size() == nbFeatures + 1)
      {
        double outMean   = meanMeasurementVector[nbFeatures];
        double outStdDev = stddevMeasurementVector[nbFeatures];
        meanMeasurementVector.SetSize(nbFeatures, false);
        stddevMeasurementVector.SetSize(nbFeatures, false);
        outRescaler = OutputRescalerType::New();
        outRescaler->SetInput(classificationFilter->GetOutput());
        outRescaler->GetFunctor().SetA(outStdDev);
        outRescaler->GetFunctor().SetB(outMean);
        outputImage = outRescaler->GetOutput();
      }
      else if (meanMeasurementVector.Size() != nbFeatures)
      {
        otbAppLogFATAL("Wrong number of components in statistics file : " << meanMeasurementVector.Size());
      }

      // Rescale vector image
      rescaler->SetScale(stddevMeasurementVector);
      rescaler->SetShift(meanMeasurementVector);
      rescaler->SetInput(inImage);

      classificationFilter->SetInput(rescaler->GetOutput());
    }
    else
    {
      otbAppLogINFO("Input image normalization deactivated.");
      classificationFilter->SetInput(inImage);
    }

    if (IsParameterEnabled("mask"))
    {
      otbAppLogINFO("Using input mask");
      // Load mask image and cast into LabeledImageType
      auto inMask = GetParameterUInt8Image("mask");
      classificationFilter->SetInputMask(inMask);
    }

    SetParameterOutputImage<FloatImageType>("out", outputImage);
    RegisterPipeline();
  }
};
}
}

OTB_APPLICATION_EXPORT(otb::Wrapper::ImageRegression)