1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
/*
* Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "otbWrapperApplication.h"
#include "otbWrapperApplicationFactory.h"
#include "otbOGRDataSourceWrapper.h"
#include "otbOGRFeatureWrapper.h"
#include "otbStatisticsXMLFileWriter.h"
#include "itkVariableLengthVector.h"
#include "otbStatisticsXMLFileReader.h"
#include "itkListSample.h"
#include "otbShiftScaleSampleListFilter.h"
#ifdef OTB_USE_LIBSVM
#include "otbLibSVMMachineLearningModel.h"
#endif
#include <time.h>
namespace otb
{
namespace Wrapper
{
class OGRLayerClassifier : public Application
{
public:
typedef OGRLayerClassifier Self;
typedef Application Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
itkNewMacro(Self);
itkTypeMacro(OGRLayerClassifier, otb::Application);
private:
void DoInit() override
{
SetName("OGRLayerClassifier");
SetDescription("Classify an OGR layer based on a machine learning model and a list of features to consider.");
SetDocLongDescription(
"This application will apply a trained machine learning model on the selected feature to get a classification of each geometry contained in an OGR "
"layer. The list of feature must match the list used for training. The predicted label is written in the user defined field for each geometry.");
SetDocLimitations("Experimental. Only shapefiles are supported for now.");
SetDocAuthors("David Youssefi during internship at CNES");
SetDocSeeAlso("ComputeOGRLayersFeaturesStatistics");
AddDocTag(Tags::Segmentation);
AddParameter(ParameterType_InputVectorData, "inshp", "Name of the input shapefile");
SetParameterDescription("inshp", "Name of the input shapefile");
AddParameter(ParameterType_InputFilename, "instats", "XML file containing mean and variance of each feature");
SetParameterDescription("instats", "XML file containing mean and variance of each feature.");
AddParameter(ParameterType_OutputFilename, "insvm", "Input model filename");
SetParameterDescription("insvm", "Input model filename.");
AddParameter(ParameterType_ListView, "feat", "Features");
SetParameterDescription("feat", "Features to be calculated");
AddParameter(ParameterType_String, "cfield", "Field containing the predicted class");
SetParameterDescription("cfield", "Field containing the predicted class");
SetParameterString("cfield", "predicted");
// Doc example parameter settings
SetDocExampleParameterValue("inshp", "vectorData.shp");
SetDocExampleParameterValue("instats", "meanVar.xml");
SetDocExampleParameterValue("insvm", "svmModel.svm");
SetDocExampleParameterValue("feat", "perimeter");
SetDocExampleParameterValue("cfield", "predicted");
SetOfficialDocLink();
}
void DoUpdateParameters() override
{
if (HasValue("inshp"))
{
std::string shapefile = GetParameterString("inshp");
otb::ogr::DataSource::Pointer ogrDS;
otb::ogr::Layer layer(nullptr, false);
OGRSpatialReference oSRS("");
std::vector<std::string> options;
ogrDS = otb::ogr::DataSource::New(shapefile, otb::ogr::DataSource::Modes::Read);
std::string layername = itksys::SystemTools::GetFilenameName(shapefile);
layername = layername.substr(0, layername.size() - 4);
layer = ogrDS->GetLayer(0);
otb::ogr::Feature feature = layer.ogr().GetNextFeature();
ClearChoices("feat");
std::vector<std::string> choiceKeys;
for (int iField = 0; iField < feature.ogr().GetFieldCount(); iField++)
{
std::string key, item = feature.ogr().GetFieldDefnRef(iField)->GetNameRef();
key = item;
// Transform chain : lowercase and alphanumerical
key.erase(std::remove_if(key.begin(), key.end(), std::not1(std::ptr_fun(::isalnum))), key.end());
std::transform(key.begin(), key.end(), key.begin(), tolower);
// Key must be unique
choiceKeys = GetChoiceKeys("feat");
while (choiceKeys.end() != std::find(choiceKeys.begin(), choiceKeys.end(), key))
key.append("0");
key = "feat." + key;
AddChoice(key, item);
}
}
}
void DoExecute() override
{
#ifdef OTB_USE_LIBSVM
clock_t tic = clock();
std::string shapefile = GetParameterString("inshp");
std::string XMLfile = GetParameterString("instats");
std::string modelfile = GetParameterString("insvm");
typedef double ValueType;
typedef itk::VariableLengthVector<ValueType> MeasurementType;
typedef itk::Statistics::ListSample<MeasurementType> ListSampleType;
typedef otb::StatisticsXMLFileReader<MeasurementType> StatisticsReader;
typedef unsigned int LabelPixelType;
typedef itk::FixedArray<LabelPixelType, 1> LabelSampleType;
typedef itk::Statistics::ListSample<LabelSampleType> LabelListSampleType;
typedef otb::Statistics::ShiftScaleSampleListFilter<ListSampleType, ListSampleType> ShiftScaleFilterType;
StatisticsReader::Pointer statisticsReader = StatisticsReader::New();
statisticsReader->SetFileName(XMLfile);
MeasurementType meanMeasurementVector = statisticsReader->GetStatisticVectorByName("mean");
MeasurementType stddevMeasurementVector = statisticsReader->GetStatisticVectorByName("stddev");
otb::ogr::DataSource::Pointer source = otb::ogr::DataSource::New(shapefile, otb::ogr::DataSource::Modes::Read);
otb::ogr::Layer layer = source->GetLayer(0);
bool goesOn = true;
otb::ogr::Feature feature = layer.ogr().GetNextFeature();
ListSampleType::Pointer input = ListSampleType::New();
LabelListSampleType::Pointer target = LabelListSampleType::New();
const int nbFeatures = GetSelectedItems("feat").size();
input->SetMeasurementVectorSize(nbFeatures);
if (feature.addr())
while (goesOn)
{
MeasurementType mv;
mv.SetSize(nbFeatures);
for (int idx = 0; idx < nbFeatures; ++idx)
mv[idx] = feature.ogr().GetFieldAsDouble(GetSelectedItems("feat")[idx]);
input->PushBack(mv);
target->PushBack(feature.ogr().GetFieldAsInteger("class"));
feature = layer.ogr().GetNextFeature();
goesOn = feature.addr() != nullptr;
}
ShiftScaleFilterType::Pointer trainingShiftScaleFilter = ShiftScaleFilterType::New();
trainingShiftScaleFilter->SetInput(input);
trainingShiftScaleFilter->SetShifts(meanMeasurementVector);
trainingShiftScaleFilter->SetScales(stddevMeasurementVector);
trainingShiftScaleFilter->Update();
ListSampleType::Pointer listSample;
LabelListSampleType::Pointer labelListSample;
listSample = trainingShiftScaleFilter->GetOutput();
labelListSample = target;
ListSampleType::Pointer trainingListSample = listSample;
LabelListSampleType::Pointer trainingLabeledListSample = labelListSample;
typedef otb::LibSVMMachineLearningModel<ValueType, LabelPixelType> LibSVMType;
LibSVMType::Pointer libSVMClassifier = LibSVMType::New();
libSVMClassifier->Load(modelfile);
trainingLabeledListSample = libSVMClassifier->PredictBatch(trainingListSample);
otb::ogr::DataSource::Pointer source2 = otb::ogr::DataSource::New(shapefile, otb::ogr::DataSource::Modes::Update_LayerUpdate);
otb::ogr::Layer layer2 = source2->GetLayer(0);
OGRFieldDefn predictedField(GetParameterString("cfield").c_str(), OFTInteger);
layer2.CreateField(predictedField, true);
bool goesOn2 = true;
layer2.ogr().ResetReading();
otb::ogr::Feature feature2 = layer2.ogr().GetNextFeature();
unsigned int count = 0;
if (feature2.addr())
while (goesOn2)
{
feature2.ogr().SetField(GetParameterString("cfield").c_str(), (int)labelListSample->GetMeasurementVector(count)[0]);
layer2.SetFeature(feature2);
feature2 = layer2.ogr().GetNextFeature();
goesOn2 = feature2.addr() != nullptr;
count++;
}
const OGRErr err = layer2.ogr().CommitTransaction();
if (err != OGRERR_NONE)
{
itkExceptionMacro(<< "Unable to commit transaction for OGR layer " << layer2.ogr().GetName() << ".");
}
source2->SyncToDisk();
clock_t toc = clock();
otbAppLogINFO("Elapsed: " << ((double)(toc - tic) / CLOCKS_PER_SEC) << " seconds.");
#else
otbAppLogFATAL("Module LIBSVM is not installed. You should consider turning OTB_USE_LIBSVM on during cmake configuration.");
#endif
}
};
}
}
OTB_APPLICATION_EXPORT(otb::Wrapper::OGRLayerClassifier)
|