File: otbOGRLayerClassifier.cxx

package info (click to toggle)
otb 7.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,005,476 kB
  • sloc: cpp: 270,143; xml: 128,722; ansic: 4,367; sh: 1,768; python: 1,084; perl: 92; makefile: 72
file content (251 lines) | stat: -rw-r--r-- 9,461 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/*
 * Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "otbWrapperApplication.h"
#include "otbWrapperApplicationFactory.h"

#include "otbOGRDataSourceWrapper.h"
#include "otbOGRFeatureWrapper.h"
#include "otbStatisticsXMLFileWriter.h"

#include "itkVariableLengthVector.h"
#include "otbStatisticsXMLFileReader.h"

#include "itkListSample.h"
#include "otbShiftScaleSampleListFilter.h"

#ifdef OTB_USE_LIBSVM
#include "otbLibSVMMachineLearningModel.h"
#endif

#include <time.h>

namespace otb
{
namespace Wrapper
{
class OGRLayerClassifier : public Application
{
public:
  typedef OGRLayerClassifier            Self;
  typedef Application                   Superclass;
  typedef itk::SmartPointer<Self>       Pointer;
  typedef itk::SmartPointer<const Self> ConstPointer;
  itkNewMacro(Self);

  itkTypeMacro(OGRLayerClassifier, otb::Application);

private:
  void DoInit() override
  {
    SetName("OGRLayerClassifier");
    SetDescription("Classify an OGR layer based on a machine learning model and a list of features to consider.");

    SetDocLongDescription(
        "This application will apply a trained machine learning model on the selected feature to get a classification of each geometry contained in an OGR "
        "layer. The list of feature must match the list used for training. The predicted label is written in the user defined field for each geometry.");
    SetDocLimitations("Experimental. Only shapefiles are supported for now.");
    SetDocAuthors("David Youssefi during internship at CNES");
    SetDocSeeAlso("ComputeOGRLayersFeaturesStatistics");
    AddDocTag(Tags::Segmentation);

    AddParameter(ParameterType_InputVectorData, "inshp", "Name of the input shapefile");
    SetParameterDescription("inshp", "Name of the input shapefile");

    AddParameter(ParameterType_InputFilename, "instats", "XML file containing mean and variance of each feature");
    SetParameterDescription("instats", "XML file containing mean and variance of each feature.");

    AddParameter(ParameterType_OutputFilename, "insvm", "Input model filename");
    SetParameterDescription("insvm", "Input model filename.");


    AddParameter(ParameterType_ListView, "feat", "Features");
    SetParameterDescription("feat", "Features to be calculated");

    AddParameter(ParameterType_String, "cfield", "Field containing the predicted class");
    SetParameterDescription("cfield", "Field containing the predicted class");
    SetParameterString("cfield", "predicted");

    // Doc example parameter settings
    SetDocExampleParameterValue("inshp", "vectorData.shp");
    SetDocExampleParameterValue("instats", "meanVar.xml");
    SetDocExampleParameterValue("insvm", "svmModel.svm");
    SetDocExampleParameterValue("feat", "perimeter");
    SetDocExampleParameterValue("cfield", "predicted");

    SetOfficialDocLink();
  }

  void DoUpdateParameters() override
  {
    if (HasValue("inshp"))
    {
      std::string shapefile = GetParameterString("inshp");

      otb::ogr::DataSource::Pointer ogrDS;
      otb::ogr::Layer               layer(nullptr, false);

      OGRSpatialReference      oSRS("");
      std::vector<std::string> options;

      ogrDS                 = otb::ogr::DataSource::New(shapefile, otb::ogr::DataSource::Modes::Read);
      std::string layername = itksys::SystemTools::GetFilenameName(shapefile);
      layername             = layername.substr(0, layername.size() - 4);
      layer                 = ogrDS->GetLayer(0);

      otb::ogr::Feature feature = layer.ogr().GetNextFeature();
      ClearChoices("feat");
      std::vector<std::string> choiceKeys;

      for (int iField = 0; iField < feature.ogr().GetFieldCount(); iField++)
      {
        std::string key, item = feature.ogr().GetFieldDefnRef(iField)->GetNameRef();
        key = item;

        // Transform chain : lowercase and alphanumerical
        key.erase(std::remove_if(key.begin(), key.end(), std::not1(std::ptr_fun(::isalnum))), key.end());
        std::transform(key.begin(), key.end(), key.begin(), tolower);

        // Key must be unique
        choiceKeys = GetChoiceKeys("feat");
        while (choiceKeys.end() != std::find(choiceKeys.begin(), choiceKeys.end(), key))
          key.append("0");

        key = "feat." + key;
        AddChoice(key, item);
      }
    }
  }

  void DoExecute() override
  {

#ifdef OTB_USE_LIBSVM
    clock_t tic = clock();

    std::string shapefile = GetParameterString("inshp");
    std::string XMLfile   = GetParameterString("instats");
    std::string modelfile = GetParameterString("insvm");

    typedef double                                        ValueType;
    typedef itk::VariableLengthVector<ValueType>          MeasurementType;
    typedef itk::Statistics::ListSample<MeasurementType>  ListSampleType;
    typedef otb::StatisticsXMLFileReader<MeasurementType> StatisticsReader;

    typedef unsigned int LabelPixelType;
    typedef itk::FixedArray<LabelPixelType, 1> LabelSampleType;
    typedef itk::Statistics::ListSample<LabelSampleType> LabelListSampleType;

    typedef otb::Statistics::ShiftScaleSampleListFilter<ListSampleType, ListSampleType> ShiftScaleFilterType;

    StatisticsReader::Pointer statisticsReader = StatisticsReader::New();
    statisticsReader->SetFileName(XMLfile);

    MeasurementType meanMeasurementVector   = statisticsReader->GetStatisticVectorByName("mean");
    MeasurementType stddevMeasurementVector = statisticsReader->GetStatisticVectorByName("stddev");

    otb::ogr::DataSource::Pointer source  = otb::ogr::DataSource::New(shapefile, otb::ogr::DataSource::Modes::Read);
    otb::ogr::Layer               layer   = source->GetLayer(0);
    bool                          goesOn  = true;
    otb::ogr::Feature             feature = layer.ogr().GetNextFeature();

    ListSampleType::Pointer      input      = ListSampleType::New();
    LabelListSampleType::Pointer target     = LabelListSampleType::New();
    const int                    nbFeatures = GetSelectedItems("feat").size();
    input->SetMeasurementVectorSize(nbFeatures);

    if (feature.addr())
      while (goesOn)
      {
        MeasurementType mv;
        mv.SetSize(nbFeatures);

        for (int idx = 0; idx < nbFeatures; ++idx)
          mv[idx]    = feature.ogr().GetFieldAsDouble(GetSelectedItems("feat")[idx]);

        input->PushBack(mv);
        target->PushBack(feature.ogr().GetFieldAsInteger("class"));
        feature = layer.ogr().GetNextFeature();
        goesOn  = feature.addr() != nullptr;
      }

    ShiftScaleFilterType::Pointer trainingShiftScaleFilter = ShiftScaleFilterType::New();
    trainingShiftScaleFilter->SetInput(input);
    trainingShiftScaleFilter->SetShifts(meanMeasurementVector);
    trainingShiftScaleFilter->SetScales(stddevMeasurementVector);
    trainingShiftScaleFilter->Update();

    ListSampleType::Pointer      listSample;
    LabelListSampleType::Pointer labelListSample;

    listSample      = trainingShiftScaleFilter->GetOutput();
    labelListSample = target;

    ListSampleType::Pointer      trainingListSample        = listSample;
    LabelListSampleType::Pointer trainingLabeledListSample = labelListSample;

    typedef otb::LibSVMMachineLearningModel<ValueType, LabelPixelType> LibSVMType;
    LibSVMType::Pointer libSVMClassifier = LibSVMType::New();
    libSVMClassifier->Load(modelfile);
    trainingLabeledListSample = libSVMClassifier->PredictBatch(trainingListSample);

    otb::ogr::DataSource::Pointer source2 = otb::ogr::DataSource::New(shapefile, otb::ogr::DataSource::Modes::Update_LayerUpdate);
    otb::ogr::Layer               layer2  = source2->GetLayer(0);

    OGRFieldDefn predictedField(GetParameterString("cfield").c_str(), OFTInteger);
    layer2.CreateField(predictedField, true);

    bool goesOn2 = true;
    layer2.ogr().ResetReading();
    otb::ogr::Feature feature2 = layer2.ogr().GetNextFeature();
    unsigned int      count    = 0;

    if (feature2.addr())
      while (goesOn2)
      {
        feature2.ogr().SetField(GetParameterString("cfield").c_str(), (int)labelListSample->GetMeasurementVector(count)[0]);
        layer2.SetFeature(feature2);
        feature2 = layer2.ogr().GetNextFeature();
        goesOn2  = feature2.addr() != nullptr;
        count++;
      }

    const OGRErr err = layer2.ogr().CommitTransaction();

    if (err != OGRERR_NONE)
    {
      itkExceptionMacro(<< "Unable to commit transaction for OGR layer " << layer2.ogr().GetName() << ".");
    }

    source2->SyncToDisk();

    clock_t toc = clock();

    otbAppLogINFO("Elapsed: " << ((double)(toc - tic) / CLOCKS_PER_SEC) << " seconds.");

#else
    otbAppLogFATAL("Module LIBSVM is not installed. You should consider turning OTB_USE_LIBSVM on during cmake configuration.");
#endif
  }
};
}
}

OTB_APPLICATION_EXPORT(otb::Wrapper::OGRLayerClassifier)