1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
/*
* Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "otbTrainImagesBase.h"
namespace otb
{
namespace Wrapper
{
class TrainImagesClassifier : public TrainImagesBase
{
public:
typedef TrainImagesClassifier Self;
typedef TrainImagesBase Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
itkNewMacro(Self) itkTypeMacro(Self, Superclass)
void DoInit() override
{
SetName("TrainImagesClassifier");
SetDescription("Train a classifier from multiple pairs of images and training vector data.");
// Documentation
SetDocLongDescription(
"Train a classifier from multiple pairs of images and training vector data. "
"Samples are composed of pixel values in each band optionally centered and reduced using an XML statistics file produced by "
"the ComputeImagesStatistics application.\n\n"
"The training vector data must contain polygons with a positive integer field "
"representing the class label. The name of this field can be set using the *Class label field* parameter.\n\n"
"Training and validation sample lists are built such that each class is equally represented in both lists. One parameter controls the ratio "
"between the number of samples in training and validation sets. Two parameters manage the size of the training and "
"validation sets per class and per image.\n\n"
"In the validation process, the confusion matrix is organized the following way:\n\n"
"* Rows: reference labels,\n"
"* Columns: produced labels.\n\n"
"In the header of the optional confusion matrix output file, the validation (reference) and predicted (produced) class labels"
" are ordered according to the rows/columns of the confusion matrix.\n\n"
"This application is based on LibSVM, OpenCV Machine Learning, and Shark ML. "
"The output of this application is a text model file, whose format corresponds to the "
"ML model type chosen. There is no image or vector data output.");
SetDocLimitations("None");
SetDocAuthors("OTB-Team");
SetDocSeeAlso("OpenCV documentation for machine learning http://docs.opencv.org/modules/ml/doc/ml.html ");
AddDocTag(Tags::Learning);
// Perform initialization
ClearApplications();
InitIO();
InitSampling();
InitClassification();
AddDocTag(Tags::Learning);
// Doc example parameter settings
SetDocExampleParameterValue("io.il", "QB_1_ortho.tif");
SetDocExampleParameterValue("io.vd", "VectorData_QB1.shp");
SetDocExampleParameterValue("io.imstat", "EstimateImageStatisticsQB1.xml");
SetDocExampleParameterValue("sample.mv", "100");
SetDocExampleParameterValue("sample.mt", "100");
SetDocExampleParameterValue("sample.vtr", "0.5");
SetDocExampleParameterValue("sample.vfn", "Class");
SetDocExampleParameterValue("classifier", "libsvm");
SetDocExampleParameterValue("classifier.libsvm.k", "linear");
SetDocExampleParameterValue("classifier.libsvm.c", "1");
SetDocExampleParameterValue("classifier.libsvm.opt", "false");
SetDocExampleParameterValue("io.out", "svmModelQB1.txt");
SetDocExampleParameterValue("io.confmatout", "svmConfusionMatrixQB1.csv");
SetOfficialDocLink();
}
void DoUpdateParameters() override
{
if (HasValue("io.vd") && IsParameterEnabled("io.vd"))
{
UpdatePolygonClassStatisticsParameters();
}
}
/**
* Select and Extract samples for validation with computed statistics and rates.
* Validation samples could be empty if sample.vrt == 0 and if no dedicated validation are provided.
* If no dedicated validation is provided the training is split corresponding to the sample.vtr parameter,
* in this case if no vector data have been provided, the training rates and statistics are computed
* on the selection and extraction training result.
* fileNames.sampleOutputs contains training data and after an ExtractValidationData training data will
* be split to fileNames.sampleTrainOutputs.
* \param imageList
* \param fileNames
* \param validationVectorFileList
* \param rates
* \param HasInputVector
*/
void ExtractValidationData(FloatVectorImageListType* imageList, TrainFileNamesHandler& fileNames, std::vector<std::string> validationVectorFileList,
const SamplingRates& rates, bool itkNotUsed(HasInputVector))
{
if (!validationVectorFileList.empty()) // Compute class statistics and sampling rate of validation data if provided.
{
ComputePolygonStatistics(imageList, validationVectorFileList, fileNames.polyStatValidOutputs);
ComputeSamplingRate(fileNames.polyStatValidOutputs, fileNames.rateValidOut, rates.fmv);
SelectAndExtractValidationSamples(fileNames, imageList, validationVectorFileList);
fileNames.sampleTrainOutputs = fileNames.sampleOutputs;
}
else if (GetParameterFloat("sample.vtr") != 0.0) // Split training data to validation
{
SplitTrainingToValidationSamples(fileNames, imageList);
}
else // Update sampleTrainOutputs and clear sampleValidOutputs
{
fileNames.sampleTrainOutputs = fileNames.sampleOutputs;
// Corner case where no dedicated validation set is provided and split ratio is set to 0 (all samples for training)
// In this case SampleValidOutputs should be cleared
fileNames.sampleValidOutputs.clear();
}
}
/**
* Extract Training data depending if input vector is provided
* \param imageList list of the image
* \param fileNames handler that contain filenames
* \param vectorFileList input vector file list (if provided
* \param rates
*/
void ExtractTrainData(FloatVectorImageListType* imageList, const TrainFileNamesHandler& fileNames, std::vector<std::string> vectorFileList,
const SamplingRates& rates)
{
// if( !vectorFileList.empty() ) // Select and Extract samples for training with computed statistics and rates
// {
ComputePolygonStatistics(imageList, vectorFileList, fileNames.polyStatTrainOutputs);
ComputeSamplingRate(fileNames.polyStatTrainOutputs, fileNames.rateTrainOut, rates.fmt);
SelectAndExtractTrainSamples(fileNames, imageList, vectorFileList, Superclass::CLASS);
// }
// else // Select training samples base on geometric sampling if no input vector is provided
// {
// SelectAndExtractTrainSamples( fileNames, imageList, vectorFileList, SamplingStrategy::GEOMETRIC, "fid" );
// }
}
void DoExecute() override
{
TrainFileNamesHandler fileNames;
std::vector<std::string> vectorFileList;
FloatVectorImageListType* imageList = GetParameterImageList("io.il");
bool HasInputVector = IsParameterEnabled("io.vd") && HasValue("io.vd");
if (HasInputVector)
vectorFileList = GetParameterStringList("io.vd");
unsigned long nbInputs = imageList->Size();
if (!HasInputVector)
{
otbAppLogFATAL("Missing input vector data files");
}
if (!vectorFileList.empty() && nbInputs > vectorFileList.size())
{
otbAppLogFATAL("Missing input vector data files to match number of images (" << nbInputs << ").");
}
// check if validation vectors are given
std::vector<std::string> validationVectorFileList;
bool dedicatedValidation = false;
if (IsParameterEnabled("io.valid") && HasValue("io.valid"))
{
validationVectorFileList = GetParameterStringList("io.valid");
if (nbInputs > validationVectorFileList.size())
{
otbAppLogFATAL("Missing validation vector data files to match number of images (" << nbInputs << ").");
}
dedicatedValidation = true;
}
fileNames.CreateTemporaryFileNames(GetParameterString("io.out"), nbInputs, dedicatedValidation);
// Compute final maximum sampling rates for both training and validation samples
SamplingRates rates = ComputeFinalMaximumSamplingRates(dedicatedValidation);
ExtractTrainData(imageList, fileNames, vectorFileList, rates);
ExtractValidationData(imageList, fileNames, validationVectorFileList, rates, HasInputVector);
// Then train the model with extracted samples
TrainModel(imageList, fileNames.sampleTrainOutputs, fileNames.sampleValidOutputs);
// cleanup
if (GetParameterInt("cleanup"))
{
otbAppLogINFO(<< "Final clean-up ...");
fileNames.clear();
}
}
private:
void UpdatePolygonClassStatisticsParameters()
{
std::vector<std::string> vectorFileList = GetParameterStringList("io.vd");
GetInternalApplication("polystat")->SetParameterString("vec", vectorFileList[0]);
UpdateInternalParameters("polystat");
}
};
} // end namespace Wrapper
} // end namespace otb
OTB_APPLICATION_EXPORT(otb::Wrapper::TrainImagesClassifier)
|