File: otbGridBasedImageResampling.cxx

package info (click to toggle)
otb 7.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,005,476 kB
  • sloc: cpp: 270,143; xml: 128,722; ansic: 4,367; sh: 1,768; python: 1,084; perl: 92; makefile: 72
file content (298 lines) | stat: -rw-r--r-- 12,789 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
/*
 * Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "otbWrapperApplication.h"
#include "otbWrapperApplicationFactory.h"

#include "otbStreamingWarpImageFilter.h"
#include "itkLinearInterpolateImageFunction.h"
#include "otbBCOInterpolateImageFunction.h"
#include "itkNearestNeighborInterpolateImageFunction.h"
#include "otbBandMathImageFilter.h"
#include "otbConcatenateVectorImageFilter.h"
#include "otbMultiToMonoChannelExtractROI.h"
#include "otbImageToVectorImageCastFilter.h"
#include "itkVectorCastImageFilter.h"


namespace otb
{
enum
{
  Interpolator_NNeighbor,
  Interpolator_Linear,
  Interpolator_BCO
};

namespace Wrapper
{

class GridBasedImageResampling : public Application
{
public:
  /** Standard class typedefs. */
  typedef GridBasedImageResampling      Self;
  typedef Application                   Superclass;
  typedef itk::SmartPointer<Self>       Pointer;
  typedef itk::SmartPointer<const Self> ConstPointer;

  typedef itk::Vector<double, 2> DisplacementType;
  typedef otb::Image<DisplacementType> DisplacementFieldType;

  typedef itk::VectorCastImageFilter<FloatVectorImageType, DisplacementFieldType> DisplacementFieldCastFilterType;


  typedef otb::StreamingWarpImageFilter<FloatVectorImageType, FloatVectorImageType, DisplacementFieldType> WarpFilterType;
  typedef otb::MultiToMonoChannelExtractROI<FloatVectorImageType::InternalPixelType, FloatVectorImageType::InternalPixelType> ExtractFilterType;

  typedef otb::BandMathImageFilter<ExtractFilterType::OutputImageType> BandMathFilterType;

  typedef otb::ImageToVectorImageCastFilter<ExtractFilterType::OutputImageType, FloatVectorImageType> VectorCastFilterType;

  typedef otb::ConcatenateVectorImageFilter<FloatVectorImageType, FloatVectorImageType, FloatVectorImageType> ConcatenateFilterType;


  /** Standard macro */
  itkNewMacro(Self);

  itkTypeMacro(GridBasedImageResampling, otb::Application);

private:
  GridBasedImageResampling()
  {
    // Instantiate warp filter
    m_WarpImageFilter         = WarpFilterType::New();
    m_BandMathX               = BandMathFilterType::New();
    m_BandMathY               = BandMathFilterType::New();
    m_ExtractX                = ExtractFilterType::New();
    m_ExtractY                = ExtractFilterType::New();
    m_VectorCastX             = VectorCastFilterType::New();
    m_VectorCastY             = VectorCastFilterType::New();
    m_Concatenate             = ConcatenateFilterType::New();
    m_DisplacementFieldCaster = DisplacementFieldCastFilterType::New();
  }

  void DoInit() override
  {
    SetName("GridBasedImageResampling");
    SetDescription("Resamples an image according to a resampling grid");

    SetDocLongDescription("This application allows performing image resampling from an input resampling grid.");
    SetDocLimitations("None");
    SetDocAuthors("OTB-Team");

    AddDocTag(Tags::Geometry);

    SetDocSeeAlso("otbStereorecificationGridGeneration");

    AddParameter(ParameterType_Group, "io", "Input and output data");
    SetParameterDescription("io", "This group of parameters allows setting the input and output images.");
    AddParameter(ParameterType_InputImage, "io.in", "Input image");
    SetParameterDescription("io.in", "The input image to resample");
    AddParameter(ParameterType_OutputImage, "io.out", "Output Image");
    SetParameterDescription("io.out", "The resampled output image");

    AddParameter(ParameterType_Group, "grid", "Resampling grid parameters");
    AddParameter(ParameterType_InputImage, "grid.in", "Input resampling grid");
    SetParameterDescription("grid.in", "The resampling grid");
    AddParameter(ParameterType_Choice, "grid.type", "Grid Type");
    SetParameterDescription("grid.type", "allows one to choose between two grid types");
    AddChoice("grid.type.def", "Displacement  grid: $G(x_out,y_out) = (x_in-x_out, y_in-y_out)$");
    SetParameterDescription("grid.type.def",
                            "A deformation grid contains at each grid position the offset to apply to this position in order to get to the corresponding point "
                            "in the input image to resample");
    AddChoice("grid.type.loc", "Localisation grid: $G(x_out,y_out) = (x_in, y_in)$");
    SetParameterDescription("grid.type.loc", "A localisation grid contains at each grid position the corresponding position in the input image to resample");


    AddParameter(ParameterType_Group, "out", "Output Image parameters");
    SetParameterDescription("out", "Parameters of the output image");

    AddParameter(ParameterType_Float, "out.ulx", "Upper Left X");
    SetParameterDescription("out.ulx", "X Coordinate of the upper-left pixel of the output resampled image");
    SetDefaultParameterFloat("out.ulx", 0);
    AddParameter(ParameterType_Float, "out.uly", "Upper Left Y");
    SetParameterDescription("out.uly", "Y Coordinate of the upper-left pixel of the output resampled image");
    SetDefaultParameterFloat("out.uly", 0);

    AddParameter(ParameterType_Int, "out.sizex", "Size X");
    SetParameterDescription("out.sizex", "Size of the output resampled image along X (in pixels)");
    AddParameter(ParameterType_Int, "out.sizey", "Size Y");
    SetParameterDescription("out.sizey", "Size of the output resampled image along Y (in pixels)");
    AddParameter(ParameterType_Float, "out.spacingx", "Pixel Size X");
    SetParameterDescription("out.spacingx", "Size of each pixel along X axis");
    SetDefaultParameterFloat("out.spacingx", 1.);
    AddParameter(ParameterType_Float, "out.spacingy", "Pixel Size Y");
    SetParameterDescription("out.spacingy", "Size of each pixel along Y axis");
    SetDefaultParameterFloat("out.spacingy", 1.);

    AddParameter(ParameterType_Float, "out.default", "Default value");
    SetParameterDescription("out.default", "The default value to give to pixel that falls outside of the input image.");
    SetDefaultParameterFloat("out.default", 0);


    // Interpolators
    AddParameter(ParameterType_Choice, "interpolator", "Interpolation");
    SetParameterDescription("interpolator", "This group of parameters allows one to define how the input image will be interpolated during resampling.");
    AddChoice("interpolator.nn", "Nearest Neighbor interpolation");
    SetParameterDescription("interpolator.nn", "Nearest neighbor interpolation leads to poor image quality, but it is very fast.");
    AddChoice("interpolator.linear", "Linear interpolation");
    SetParameterDescription("interpolator.linear", "Linear interpolation leads to average image quality but is quite fast");
    AddChoice("interpolator.bco", "Bicubic interpolation");
    AddParameter(ParameterType_Radius, "interpolator.bco.radius", "Radius for bicubic interpolation");
    SetParameterDescription("interpolator.bco.radius",
                            "This parameter allows controlling the size of the bicubic interpolation filter. If the target pixel size is higher than the input "
                            "pixel size, increasing this parameter will reduce aliasing artifacts.");
    SetDefaultParameterInt("interpolator.bco.radius", 2);
    SetParameterString("interpolator", "bco");

    AddRAMParameter();

    // Doc example
    SetDocExampleParameterValue("io.in", "ROI_IKO_PAN_LesHalles_sub.tif");
    SetDocExampleParameterValue("io.out", "ROI_IKO_PAN_LesHalles_sub_resampled.tif uint8");
    SetDocExampleParameterValue("grid.in", "ROI_IKO_PAN_LesHalles_sub_deformation_field.tif");
    SetDocExampleParameterValue("out.sizex", "256");
    SetDocExampleParameterValue("out.sizey", "256");
    SetDocExampleParameterValue("grid.type", "def");

    SetOfficialDocLink();
  }

  void DoUpdateParameters() override
  {
    // Nothing to do here
  }

  void DoExecute() override
  {
    // Get the input image
    FloatVectorImageType* inImage = GetParameterImage("io.in");

    // Get the resampling grid
    FloatVectorImageType* inGrid = GetParameterImage("grid.in");

    if (inGrid->GetNumberOfComponentsPerPixel() != 2)
    {
      itkExceptionMacro(<< "Number of components of the grid is not 2, this is probably not an image of 2D resampling grid.");
    }

    // In case of localisation grid, we must internally convert to
    // deformation grid, which is the only type handled by StreamingWarpImageFilter
    if (GetParameterString("grid.type") == "loc")
    {
      GetLogger()->Info("Grid interpreted as a location grid.");
      m_ExtractX->SetInput(inGrid);
      m_ExtractX->SetChannel(1);
      m_BandMathX->SetNthInput(0, m_ExtractX->GetOutput(), "locX");
      m_BandMathX->SetExpression("locX-idxPhyX");
      m_ExtractY->SetInput(inGrid);
      m_ExtractY->SetChannel(2);
      m_BandMathY->SetNthInput(0, m_ExtractY->GetOutput(), "locY");
      m_BandMathY->SetExpression("locY-idxPhyY");
      m_VectorCastX->SetInput(m_BandMathX->GetOutput());
      m_Concatenate->SetInput1(m_VectorCastX->GetOutput());
      m_VectorCastY->SetInput(m_BandMathY->GetOutput());
      m_Concatenate->SetInput2(m_VectorCastY->GetOutput());
      m_DisplacementFieldCaster->SetInput(m_Concatenate->GetOutput());
    }
    else
    {
      GetLogger()->Info("Grid interpreted as a deformation grid.");
      m_DisplacementFieldCaster->SetInput(inGrid);
    }

    m_DisplacementFieldCaster->GetOutput()->UpdateOutputInformation();

    m_WarpImageFilter->SetDisplacementField(m_DisplacementFieldCaster->GetOutput());

    // Set inputs
    m_WarpImageFilter->SetInput(inImage);

    // Get Interpolator
    switch (GetParameterInt("interpolator"))
    {
    case Interpolator_Linear:
    {
      typedef itk::LinearInterpolateImageFunction<FloatVectorImageType, double> LinearInterpolationType;
      LinearInterpolationType::Pointer interpolator = LinearInterpolationType::New();
      m_WarpImageFilter->SetInterpolator(interpolator);
    }
    break;
    case Interpolator_NNeighbor:
    {
      typedef itk::NearestNeighborInterpolateImageFunction<FloatVectorImageType, double> NearestNeighborInterpolationType;
      NearestNeighborInterpolationType::Pointer interpolator = NearestNeighborInterpolationType::New();
      m_WarpImageFilter->SetInterpolator(interpolator);
    }
    break;
    case Interpolator_BCO:
    {
      typedef otb::BCOInterpolateImageFunction<FloatVectorImageType> BCOInterpolationType;
      BCOInterpolationType::Pointer                                  interpolator = BCOInterpolationType::New();
      interpolator->SetRadius(GetParameterInt("interpolator.bco.radius"));
      m_WarpImageFilter->SetInterpolator(interpolator);
    }
    break;
    }


    // Set Output information
    WarpFilterType::SizeType size;
    size[0] = GetParameterInt("out.sizex");
    size[1] = GetParameterInt("out.sizey");
    m_WarpImageFilter->SetOutputSize(size);

    WarpFilterType::SpacingType spacing;
    spacing[0] = GetParameterFloat("out.spacingx");
    spacing[1] = GetParameterFloat("out.spacingy");
    m_WarpImageFilter->SetOutputSpacing(spacing);

    WarpFilterType::PointType ul;
    ul[0] = GetParameterFloat("out.ulx");
    ul[1] = GetParameterFloat("out.uly");
    m_WarpImageFilter->SetOutputOrigin(ul);

    // Build the default pixel
    FloatVectorImageType::PixelType defaultValue;
    defaultValue.SetSize(inImage->GetNumberOfComponentsPerPixel());
    defaultValue.Fill(GetParameterFloat("out.default"));

    m_WarpImageFilter->SetEdgePaddingValue(defaultValue);

    // Output Image
    SetParameterOutputImage("io.out", m_WarpImageFilter->GetOutput());
  }

  WarpFilterType::Pointer                  m_WarpImageFilter;
  ExtractFilterType::Pointer               m_ExtractX;
  ExtractFilterType::Pointer               m_ExtractY;
  BandMathFilterType::Pointer              m_BandMathX;
  BandMathFilterType::Pointer              m_BandMathY;
  VectorCastFilterType::Pointer            m_VectorCastX;
  VectorCastFilterType::Pointer            m_VectorCastY;
  ConcatenateFilterType::Pointer           m_Concatenate;
  DisplacementFieldCastFilterType::Pointer m_DisplacementFieldCaster;
};
} // End namespace Wrapper
} // End namepsace otb


OTB_APPLICATION_EXPORT(otb::Wrapper::GridBasedImageResampling)