1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
|
/*
* Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "otbWrapperApplication.h"
#include "otbWrapperApplicationFactory.h"
#include "otbSinclairToCoherencyMatrixImageFilter.h"
#include "otbSinclairToCovarianceMatrixImageFilter.h"
#include "otbSinclairToCircularCovarianceMatrixImageFilter.h"
#include "otbSinclairToMuellerMatrixImageFilter.h"
#include "otbSinclairToReciprocalCoherencyMatrixImageFilter.h"
#include "otbSinclairToReciprocalCovarianceMatrixImageFilter.h"
#include "otbSinclairToReciprocalCircularCovarianceMatrixImageFilter.h"
#include "otbMuellerToReciprocalCovarianceImageFilter.h"
#include "otbMuellerToPolarisationDegreeAndPowerImageFilter.h"
#include "otbReciprocalCoherencyToReciprocalMuellerImageFilter.h"
#include "otbReciprocalCovarianceToCoherencyDegreeImageFilter.h"
#include "otbReciprocalCovarianceToReciprocalCoherencyImageFilter.h"
#include "otbReciprocalLinearCovarianceToReciprocalCircularCovarianceImageFilter.h"
namespace otb
{
namespace Wrapper
{
class SARPolarMatrixConvert : public Application
{
public:
/** Standard class typedefs. */
typedef SARPolarMatrixConvert Self;
typedef Application Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
// Monostatic case
using RCohSRFilterType = SinclairToReciprocalCoherencyMatrixImageFilter<ComplexDoubleImageType, ComplexDoubleVectorImageType>;
using RCovSRFilterType = SinclairToReciprocalCovarianceMatrixImageFilter<ComplexDoubleImageType, ComplexDoubleVectorImageType>;
using RCCSRFilterType = SinclairToReciprocalCircularCovarianceMatrixImageFilter<ComplexDoubleImageType, ComplexDoubleVectorImageType>;
using RCRMFilterType = otb::ReciprocalCoherencyToReciprocalMuellerImageFilter<ComplexDoubleVectorImageType, DoubleVectorImageType>;
using RCCDFilterType = otb::ReciprocalCovarianceToCoherencyDegreeImageFilter<ComplexDoubleVectorImageType, ComplexDoubleVectorImageType>;
using RCRCFilterType = otb::ReciprocalCovarianceToReciprocalCoherencyImageFilter<ComplexDoubleVectorImageType, ComplexDoubleVectorImageType>;
using RLCRCCFilterType = otb::ReciprocalLinearCovarianceToReciprocalCircularCovarianceImageFilter<ComplexDoubleVectorImageType, ComplexDoubleVectorImageType>;
// Bistatic case
using CohSRFilterType = SinclairToCoherencyMatrixImageFilter<ComplexDoubleImageType, ComplexDoubleVectorImageType>;
using CovSRFilterType = SinclairToCovarianceMatrixImageFilter<ComplexDoubleImageType, ComplexDoubleVectorImageType>;
using CCSRFilterType = SinclairToCircularCovarianceMatrixImageFilter<ComplexDoubleImageType, ComplexDoubleVectorImageType>;
using MSRFilterType = SinclairToMuellerMatrixImageFilter<ComplexDoubleImageType, DoubleVectorImageType>;
using MRCFilterType = otb::MuellerToReciprocalCovarianceImageFilter<DoubleVectorImageType, ComplexDoubleVectorImageType>;
using MPDPFilterType = otb::MuellerToPolarisationDegreeAndPowerImageFilter<DoubleVectorImageType, DoubleVectorImageType>;
/** Standard macro */
itkNewMacro(Self);
itkTypeMacro(SARPolarMatrixConvert, otb::Application);
private:
void DoInit() override
{
SetName("SARPolarMatrixConvert");
SetDescription("This applications allows converting classical polarimetric matrices to each other.");
// Documentation
SetDocLongDescription(
"This application allows converting classical polarimetric matrices to each other.\n"
"For instance, it is possible to get the coherency matrix from the Sinclar one, or the Mueller matrix from the coherency one.\n"
"The filters used in this application never handle matrices, but images where each band is related to their elements.\n"
"As most of the time SAR polarimetry handles symmetric/hermitian matrices, only the relevant elements are stored, so that the images representing them "
"have a minimal number of bands.\n"
"For instance, the coherency matrix size is 3x3 in the monostatic case, and 4x4 in the bistatic case: it will thus be stored in a 6-band or a 10-band "
"complex image (the diagonal and the upper elements of the matrix).\n"
"\n"
"The Sinclair matrix is a special case: it is always represented as 3 or 4 one-band complex images (for mono or bistatic case).\n"
"The available conversions are listed below:\n"
"\n--- Monostatic case ---\n"
"1 msinclairtocoherency --> Sinclair matrix to coherency matrix (input: 3 x 1 complex channel (HH, HV or VH, VV) | output: 6 complex channels)\n"
"2 msinclairtocovariance --> Sinclair matrix to covariance matrix (input: 3 x 1 complex channel (HH, HV or VH, VV) | output: 6 complex channels)\n"
"3 msinclairtocircovariance --> Sinclair matrix to circular covariance matrix (input: 3 x 1 complex channel (HH, HV or VH, VV) | output: 6 complex "
"channels)\n"
"4 mcoherencytomueller --> Coherency matrix to Mueller matrix (input: 6 complex channels | 16 real channels)\n"
"5 mcovariancetocoherencydegree --> Covariance matrix to coherency degree (input: 6 complex channels | 3 complex channels)\n"
"6 mcovariancetocoherency --> Covariance matrix to coherency matrix (input: 6 complex channels | 6 complex channels)\n"
"7 mlinearcovariancetocircularcovariance --> Covariance matrix to circular covariance matrix (input: 6 complex channels | output: 6 complex channels)\n"
"\n--- Bistatic case ---\n"
"8 bsinclairtocoherency --> Sinclair matrix to coherency matrix (input: 4 x 1 complex channel (HH, HV, VH, VV) | 10 complex channels)\n"
"9 bsinclairtocovariance --> Sinclair matrix to covariance matrix (input: 4 x 1 complex channel (HH, HV, VH, VV) | output: 10 complex channels)\n"
"10 bsinclairtocircovariance --> Sinclair matrix to circular covariance matrix (input: 4 x 1 complex channel (HH, HV, VH, VV) | output: 10 complex "
"channels)\n"
"\n--- Both cases ---\n"
"11 sinclairtomueller --> Sinclair matrix to Mueller matrix (input: 4 x 1 complex channel (HH, HV, VH, VV) | output: 16 real channels)\n"
"12 muellertomcovariance --> Mueller matrix to covariance matrix (input: 16 real channels | output: 6 complex channels)\n"
"13 muellertopoldegandpower --> Mueller matrix to polarization degree and power (input: 16 real channels | output: 4 real channels)"
);
SetDocLimitations("None");
SetDocAuthors("OTB-Team");
SetDocSeeAlso("SARPolarSynth, SARDecompositions");
AddDocTag(Tags::SAR);
AddParameter(ParameterType_InputImage, "inc", "Input multi-band complex image");
SetParameterDescription("inc", "Input: multi-band complex image");
MandatoryOff("inc");
AddParameter(ParameterType_InputImage, "inf", "Input multi-band real image");
SetParameterDescription("inf", "Input: multi-band real image");
MandatoryOff("inf");
AddParameter(ParameterType_InputImage, "inhh", "Input one-band complex image (HH)");
SetParameterDescription("inhh", "Input: one-band complex image (HH)");
MandatoryOff("inhh");
AddParameter(ParameterType_InputImage, "inhv", "Input one-band complex image (HV)");
SetParameterDescription("inhv", "Input: one-band complex image (HV)");
MandatoryOff("inhv");
AddParameter(ParameterType_InputImage, "invh", "Input one-band complex image (VH)");
SetParameterDescription("invh", "Input: one-band complex image (VH)");
MandatoryOff("invh");
AddParameter(ParameterType_InputImage, "invv", "Input one-band complex image (VV)");
SetParameterDescription("invv", "Input: one-band complex image (VV)");
MandatoryOff("invv");
AddParameter(ParameterType_OutputImage, "outc", "Output Complex Image");
SetParameterDescription("outc", "Output Complex image.");
MandatoryOff("outc");
AddParameter(ParameterType_OutputImage, "outf", "Output Real Image");
SetParameterDescription("outf", "Output Real image.");
MandatoryOff("outf");
AddParameter(ParameterType_Choice, "conv", "Conversion");
// Monostatic case
// #1
// SinclairToReciprocalCoherency
AddChoice("conv.msinclairtocoherency", "1 Monostatic: Sinclair matrix to coherency matrix (complex output)");
SetParameterDescription("conv.msinclairtocoherency", "1 Monostatic: Sinclair matrix to coherency matrix (complex output)");
// #2
// SinclairToReciprocalCovariance
AddChoice("conv.msinclairtocovariance", "2 Monostatic: Sinclair matrix to covariance matrix (complex output)");
SetParameterDescription("conv.msinclairtocovariance", "2 Monostatic: Sinclair matrix to covariance matrix (complex output)");
// #3
// SinclairToReciprocalCircularCovariance
AddChoice("conv.msinclairtocircovariance", "3 Monostatic: Sinclair matrix to circular covariance matrix (complex output)");
SetParameterDescription("conv.msinclairtocircovariance", "3 Monostatic: Sinclair matrix to circular covariance matrix (complex output)");
// #4
// ReciprocalCoherencyToReciprocalMuellerImageFilter
AddChoice("conv.mcoherencytomueller", "4 Monostatic: Coherency matrix to Mueller matrix");
SetParameterDescription("conv.mcoherencytomueller", "4 Monostatic: Coherency matrix to Mueller matrix");
// #5
// ReciprocalCovarianceToCoherencyDegreeImageFilter
AddChoice("conv.mcovariancetocoherencydegree", "5 Monostatic: Covariance matrix to coherency degree");
SetParameterDescription("conv.mcovariancetocoherencydegree", "5 Monostatic: Covariance matrix to coherency degree ");
// #6
// ReciprocalCovarianceToReciprocalCoherencyImageFilter
AddChoice("conv.mcovariancetocoherency", "6 Monostatic: Covariance matrix to coherency matrix (complex output)");
SetParameterDescription("conv.mcovariancetocoherency", "6 Monostatic: Covariance matrix to coherency matrix (complex output)");
// #7
// ReciprocalLinearCovarianceToReciprocalCircularCovarianceImageFilter
AddChoice("conv.mlinearcovariancetocircularcovariance", "7 Monostatic: Covariance matrix to circular covariance matrix (complex output)");
SetParameterDescription("conv.mlinearcovariancetocircularcovariance", "7 Monostatic: Covariance matrix to circular covariance matrix (complex output)");
// #8
// MuellerToReciprocalCovarianceImageFilter
AddChoice("conv.muellertomcovariance", "8 Bi/mono: Mueller matrix to monostatic covariance matrix");
SetParameterDescription("conv.muellertomcovariance", "8 Bi/mono: Mueller matrix to monostatic covariance matrix");
// Bistatic case
// #9
// SinclairToCoherency
AddChoice("conv.bsinclairtocoherency", "9 Bistatic: Sinclair matrix to coherency matrix (complex output)");
SetParameterDescription("conv.bsinclairtocoherency", "9 Bistatic: Sinclair matrix to coherency matrix (complex output)");
// #10
// SinclairToCovariance
AddChoice("conv.bsinclairtocovariance", "10 Bistatic: Sinclair matrix to covariance matrix (complex output)");
SetParameterDescription("conv.bsinclairtocovariance", "10 Bistatic: Sinclair matrix to covariance matrix (complex output)");
// #11
// SinclairToCircularCovariance
AddChoice("conv.bsinclairtocircovariance", "11 Bistatic: Sinclair matrix to circular covariance matrix (complex output)");
SetParameterDescription("conv.bsinclairtocircovariance", "11 Bistatic: Sinclair matrix to circular covariance matrix (complex output)");
// Both case
// #12
// SinclairToMueller
AddChoice("conv.sinclairtomueller", "12 Bi/mono: Sinclair matrix to Mueller matrix");
SetParameterDescription("conv.sinclairtomueller", "12 Bi/mono: Sinclair matrix to Mueller matrix");
// #13
// MuellerToPolarisationDegreeAndPowerImageFilter
AddChoice("conv.muellertopoldegandpower", "13 Bi/mono: Mueller matrix to polarisation degree and power");
SetParameterDescription("conv.muellertopoldegandpower", "13 Bi/mono: Mueller matrix to polarisation degree and power");
AddRAMParameter();
// Default values
SetDefaultParameterInt("conv", 0); // SinclairToReciprocalCoherency
// Doc example parameter settings
SetDocExampleParameterValue("inhh", "HH.tif");
SetDocExampleParameterValue("invh", "VH.tif");
SetDocExampleParameterValue("invv", "VV.tif");
SetDocExampleParameterValue("conv", "msinclairtocoherency");
SetDocExampleParameterValue("outc", "mcoherency.tif");
SetOfficialDocLink();
}
void DoUpdateParameters() override
{
int convType = GetParameterInt("conv");
if ((convType >= 0) && (convType <= 2)) // msinclairtocoherency msinclairtocovariance msinclairtocircovariance
{
GetParameterByKey("inc")->SetActive(false);
GetParameterByKey("inf")->SetActive(false);
GetParameterByKey("inhh")->SetActive(true);
GetParameterByKey("inhv")->SetActive(true);
GetParameterByKey("invh")->SetActive(true);
GetParameterByKey("invv")->SetActive(true);
GetParameterByKey("outc")->SetActive(true);
GetParameterByKey("outf")->SetActive(false);
}
else if ((convType >= 3) &&
(convType <= 6)) // mcoherencytomueller mcovariancetocoherencydegree mcovariancetocoherency mlinearcovariancetocircularcovariance
{
GetParameterByKey("inc")->SetActive(true);
GetParameterByKey("inf")->SetActive(false);
GetParameterByKey("inhh")->SetActive(false);
GetParameterByKey("inhv")->SetActive(false);
GetParameterByKey("invh")->SetActive(false);
GetParameterByKey("invv")->SetActive(false);
if (convType == 3)
{
GetParameterByKey("outc")->SetActive(false);
GetParameterByKey("outf")->SetActive(true);
}
else
{
GetParameterByKey("outc")->SetActive(true);
GetParameterByKey("outf")->SetActive(false);
}
}
else if (convType == 7) // muellertomcovariance
{
GetParameterByKey("inc")->SetActive(false);
GetParameterByKey("inf")->SetActive(true);
GetParameterByKey("inhh")->SetActive(false);
GetParameterByKey("inhv")->SetActive(false);
GetParameterByKey("invh")->SetActive(false);
GetParameterByKey("invv")->SetActive(false);
GetParameterByKey("outc")->SetActive(true);
GetParameterByKey("outf")->SetActive(false);
}
else if ((convType >= 8) && (convType <= 11)) // bsinclairtocoherency bsinclairtocovariance bsinclairtocircovariance sinclairtomueller
{
GetParameterByKey("inc")->SetActive(false);
GetParameterByKey("inf")->SetActive(false);
GetParameterByKey("inhh")->SetActive(true);
GetParameterByKey("inhv")->SetActive(true);
GetParameterByKey("invh")->SetActive(true);
GetParameterByKey("invv")->SetActive(true);
if (convType == 11)
{
GetParameterByKey("outc")->SetActive(false);
GetParameterByKey("outf")->SetActive(true);
}
else
{
GetParameterByKey("outc")->SetActive(true);
GetParameterByKey("outf")->SetActive(false);
}
}
else if (convType == 12) // muellertopoldegandpower
{
GetParameterByKey("inc")->SetActive(false);
GetParameterByKey("inf")->SetActive(true);
GetParameterByKey("inhh")->SetActive(false);
GetParameterByKey("inhv")->SetActive(false);
GetParameterByKey("invh")->SetActive(false);
GetParameterByKey("invv")->SetActive(false);
GetParameterByKey("outc")->SetActive(false);
GetParameterByKey("outf")->SetActive(true);
}
}
void DoExecute() override
{
//****************************************
//* Check inputs and outputs consistency *
//****************************************
bool inc = HasUserValue("inc");
bool inf = HasUserValue("inf");
bool inhh = HasUserValue("inhh");
bool inhv = HasUserValue("inhv");
bool invh = HasUserValue("invh");
bool invv = HasUserValue("invv");
bool outc = HasUserValue("outc");
bool outf = HasUserValue("outf");
int convType = GetParameterInt("conv");
if ((!outc) && (!outf))
otbAppLogFATAL(<< "No output image provided; please, set the parameter 'outc' or 'outf'.");
if ((convType >= 0) && (convType <= 2)) // msinclairtocoherency msinclairtocovariance msinclairtocircovariance
{
if ((!inhv) && (!invh))
otbAppLogFATAL(<< "Parameter 'inhv' or 'invh' not set.");
if (!inhh)
otbAppLogFATAL(<< "Parameter 'inhh' not set.");
if (!invv)
otbAppLogFATAL(<< "Parameter 'invv' not set.");
}
else if ((convType >= 3) &&
(convType <= 6)) // mcoherencytomueller mcovariancetocoherencydegree mcovariancetocoherency mlinearcovariancetocircularcovariance
{
if (!inc)
otbAppLogFATAL(<< "Parameter 'inc' not set.");
}
else if ((convType >= 8) && (convType <= 11)) // bsinclairtocoherency bsinclairtocovariance bsinclairtocircovariance sinclairtomueller
{
if ((!inhh) || (!inhv) || (!invh) || (!invv))
otbAppLogFATAL(<< "Please, ensure that HH, HV, VH and VV complex images have been provided (parameters inhh, inhv, invh, invv).");
}
else if ((convType == 7) || (convType == 12)) // muellertomcovariance muellertopoldegandpower
{
if (!inf)
otbAppLogFATAL(<< "Parameter 'inf' not set.");
}
switch (GetParameterInt("conv"))
{
//***************************************
//* MONOSTATIC *
//***************************************
case 0: // SinclairToReciprocalCoherency
m_RCohSRFilter = RCohSRFilterType::New();
if (inhv)
m_RCohSRFilter->SetInput<polarimetry_tags::hv_or_vh>(GetParameterComplexDoubleImage("inhv"));
else if (invh)
m_RCohSRFilter->SetInput<polarimetry_tags::hv_or_vh>(GetParameterComplexDoubleImage("invh"));
m_RCohSRFilter->SetInput<polarimetry_tags::hh>(GetParameterComplexDoubleImage("inhh"));
m_RCohSRFilter->SetInput<polarimetry_tags::vv>(GetParameterComplexDoubleImage("invv"));
SetParameterOutputImage("outc", m_RCohSRFilter->GetOutput()); // input: 3 x 1 complex channel | output : 6 complex channels
break;
case 1: // SinclairToReciprocalCovariance
m_RCovSRFilter = RCovSRFilterType::New();
if (inhv)
m_RCovSRFilter->SetInput<polarimetry_tags::hv_or_vh>(GetParameterComplexDoubleImage("inhv"));
else if (invh)
m_RCovSRFilter->SetInput<polarimetry_tags::hv_or_vh>(GetParameterComplexDoubleImage("invh"));
m_RCovSRFilter->SetInput<polarimetry_tags::hh>(GetParameterComplexDoubleImage("inhh"));
m_RCovSRFilter->SetInput<polarimetry_tags::vv>(GetParameterComplexDoubleImage("invv"));
SetParameterOutputImage("outc", m_RCovSRFilter->GetOutput()); // input: 3 x 1 complex channel | output : 6 complex channels
break;
case 2: // SinclairToReciprocalCircularCovariance
m_RCCSRFilter = RCCSRFilterType::New();
if (inhv)
m_RCCSRFilter->SetInput<polarimetry_tags::hv_or_vh>(GetParameterComplexDoubleImage("inhv"));
else if (invh)
m_RCCSRFilter->SetInput<polarimetry_tags::hv_or_vh>(GetParameterComplexDoubleImage("invh"));
m_RCCSRFilter->SetInput<polarimetry_tags::hh>(GetParameterComplexDoubleImage("inhh"));
m_RCCSRFilter->SetInput<polarimetry_tags::vv>(GetParameterComplexDoubleImage("invv"));
SetParameterOutputImage("outc", m_RCCSRFilter->GetOutput()); // input: 3 x 1 complex channel | output : 6 complex channels
break;
case 3: // ReciprocalCoherencyToReciprocalMuellerImageFilter
m_RCRMFilter = RCRMFilterType::New();
m_RCRMFilter->SetInput<0>(GetParameterComplexDoubleVectorImage("inc"));
SetParameterOutputImage("outf", m_RCRMFilter->GetOutput()); // input: 6 complex channels | 16 real channels
break;
case 4: // ReciprocalCovarianceToCoherencyDegreeImageFilter
m_RCCDFilter = RCCDFilterType::New();
m_RCCDFilter->SetInput<0>(GetParameterComplexDoubleVectorImage("inc"));
SetParameterOutputImage("outc", m_RCCDFilter->GetOutput()); // input: 6 complex channels | 3 complex channels
break;
case 5: // ReciprocalCovarianceToReciprocalCoherencyImageFilter
m_RCRCFilter = RCRCFilterType::New();
m_RCRCFilter->SetInput<0>(GetParameterComplexDoubleVectorImage("inc"));
SetParameterOutputImage("outc", m_RCRCFilter->GetOutput()); // input: 6 complex channels | 6 complex channels
break;
case 6: // ReciprocalLinearCovarianceToReciprocalCircularCovarianceImageFilter
m_RLCRCCFilter = RLCRCCFilterType::New();
m_RLCRCCFilter->SetInput<0>(GetParameterComplexDoubleVectorImage("inc"));
SetParameterOutputImage("outc", m_RLCRCCFilter->GetOutput()); // input: 6 complex channels | output : 6 complex channels
break;
case 7: // MuellerToReciprocalCovarianceImageFilter
m_MRCFilter = MRCFilterType::New();
m_MRCFilter->SetInput<0>(GetParameterDoubleVectorImage("inf"));
SetParameterOutputImage("outc", m_MRCFilter->GetOutput()); // input: 16 real channels | output : 6 complex channels
break;
//***************************************
//* BISTATIC *
//***************************************
case 8: // SinclairToCoherency
m_CohSRFilter = CohSRFilterType::New();
m_CohSRFilter->SetInput<polarimetry_tags::hh>(GetParameterComplexDoubleImage("inhh"));
m_CohSRFilter->SetInput<polarimetry_tags::hv>(GetParameterComplexDoubleImage("inhv"));
m_CohSRFilter->SetInput<polarimetry_tags::vh>(GetParameterComplexDoubleImage("invh"));
m_CohSRFilter->SetInput<polarimetry_tags::vv>(GetParameterComplexDoubleImage("invv"));
SetParameterOutputImage("outc", m_CohSRFilter->GetOutput()); // input: 4 x 1 complex channel | 10 complex channels
break;
case 9: // SinclairToCovariance
m_CovSRFilter = CovSRFilterType::New();
m_CovSRFilter->SetInput<polarimetry_tags::hh>(GetParameterComplexDoubleImage("inhh"));
m_CovSRFilter->SetInput<polarimetry_tags::hv>(GetParameterComplexDoubleImage("inhv"));
m_CovSRFilter->SetInput<polarimetry_tags::vh>(GetParameterComplexDoubleImage("invh"));
m_CovSRFilter->SetInput<polarimetry_tags::vv>(GetParameterComplexDoubleImage("invv"));
SetParameterOutputImage("outc", m_CovSRFilter->GetOutput()); // input: 4 x 1 complex channel | output : 10 complex channels
break;
case 10: // SinclairToCircularCovariance
m_CCSRFilter = CCSRFilterType::New();
m_CCSRFilter->SetInput<polarimetry_tags::hh>(GetParameterComplexDoubleImage("inhh"));
m_CCSRFilter->SetInput<polarimetry_tags::hv>(GetParameterComplexDoubleImage("inhv"));
m_CCSRFilter->SetInput<polarimetry_tags::vh>(GetParameterComplexDoubleImage("invh"));
m_CCSRFilter->SetInput<polarimetry_tags::vv>(GetParameterComplexDoubleImage("invv"));
SetParameterOutputImage("outc", m_CCSRFilter->GetOutput()); // input: 4 x 1 complex channel | output : 10 complex channels
break;
//***************************************
//* BOTH CASES *
//***************************************
case 11: // SinclairToMueller
m_MSRFilter = MSRFilterType::New();
m_MSRFilter->SetInput<polarimetry_tags::hh>(GetParameterComplexDoubleImage("inhh"));
m_MSRFilter->SetInput<polarimetry_tags::hv>(GetParameterComplexDoubleImage("inhv"));
m_MSRFilter->SetInput<polarimetry_tags::vh>(GetParameterComplexDoubleImage("invh"));
m_MSRFilter->SetInput<polarimetry_tags::vv>(GetParameterComplexDoubleImage("invv"));
SetParameterOutputImage("outf", m_MSRFilter->GetOutput()); // input: 4 x 1 complex channel | output : 16 real channels
break;
case 12: // MuellerToPolarisationDegreeAndPowerImageFilter
m_MPDPFilter = MPDPFilterType::New();
m_MPDPFilter->SetInput<0>(GetParameterDoubleVectorImage("inf"));
SetParameterOutputImage("outf", m_MPDPFilter->GetOutput()); // input: 16 real channels | output : 4 real channels
break;
}
}
// Monostatic
RCohSRFilterType::Pointer m_RCohSRFilter;
RCovSRFilterType::Pointer m_RCovSRFilter;
RCCSRFilterType::Pointer m_RCCSRFilter;
RCRMFilterType::Pointer m_RCRMFilter;
RCCDFilterType::Pointer m_RCCDFilter;
RCRCFilterType::Pointer m_RCRCFilter;
RLCRCCFilterType::Pointer m_RLCRCCFilter;
// Bistatic
CohSRFilterType::Pointer m_CohSRFilter;
CovSRFilterType::Pointer m_CovSRFilter;
CCSRFilterType::Pointer m_CCSRFilter;
MSRFilterType::Pointer m_MSRFilter;
// Both cases
MRCFilterType::Pointer m_MRCFilter;
MPDPFilterType::Pointer m_MPDPFilter;
};
} // end namespace Wrapper
} // end namespace otb
OTB_APPLICATION_EXPORT(otb::Wrapper::SARPolarMatrixConvert)
|