File: otbMarkovRandomFieldFilter.hxx

package info (click to toggle)
otb 7.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,005,476 kB
  • sloc: cpp: 270,143; xml: 128,722; ansic: 4,367; sh: 1,768; python: 1,084; perl: 92; makefile: 72
file content (376 lines) | stat: -rw-r--r-- 12,453 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
/*
 * Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


#ifndef otbMarkovRandomFieldFilter_hxx
#define otbMarkovRandomFieldFilter_hxx
#include "otbMarkovRandomFieldFilter.h"

namespace otb
{
template <class TInputImage, class TClassifiedImage>
MarkovRandomFieldFilter<TInputImage, TClassifiedImage>::MarkovRandomFieldFilter(void)
  : m_NumberOfClasses(0),
    m_MaximumNumberOfIterations(50),
    m_ErrorCounter(0),
    m_ImageDeltaEnergy(0.0),
    m_NeighborhoodRadius(1),
    m_TotalNumberOfValidPixelsInOutputImage(1),
    m_TotalNumberOfPixelsInInputImage(1),
    m_ErrorTolerance(0.0),
    m_SmoothingFactor(1.0),
    m_NumberOfIterations(0),
    m_Lambda(1.0),
    m_ExternalClassificationSet(false),
    m_StopCondition(MaximumNumberOfIterations)
{
  m_Generator = RandomGeneratorType::GetInstance();
  m_Generator->SetSeed();

  this->SetNumberOfRequiredInputs(1);
  if ((int)InputImageDimension != (int)ClassifiedImageDimension)
  {
    std::ostringstream msg;
    msg << "Input image dimension: " << InputImageDimension << " != output image dimension: " << ClassifiedImageDimension;
    throw itk::ExceptionObject(__FILE__, __LINE__, msg.str(), ITK_LOCATION);
  }
  m_InputImageNeighborhoodRadius.Fill(m_NeighborhoodRadius);
  //     m_MRFNeighborhoodWeight.resize(0);
  //     m_NeighborInfluence.resize(0);
  //     m_DummyVector.resize(0);
  //     this->SetMRFNeighborhoodWeight( m_DummyVector );
  //     this->SetDefaultMRFNeighborhoodWeight();

  // srand((unsigned)time(0));
}

template <class TInputImage, class TClassifiedImage>
void MarkovRandomFieldFilter<TInputImage, TClassifiedImage>::SetTrainingInput(const TrainingImageType* trainingImage)
{
  m_ExternalClassificationSet = true;
  // Process object is not const-correct so the const_cast is required here
  this->itk::ProcessObject::SetNthInput(1, const_cast<TrainingImageType*>(trainingImage));
  this->Modified();
}

template <class TInputImage, class TClassifiedImage>
const typename MarkovRandomFieldFilter<TInputImage, TClassifiedImage>::TrainingImageType*
MarkovRandomFieldFilter<TInputImage, TClassifiedImage>::GetTrainingInput(void)
{
  if (this->GetNumberOfInputs() < 2)
  {
    return nullptr;
  }
  return static_cast<const TrainingImageType*>(this->itk::ProcessObject::GetInput(1));
}

template <class TInputImage, class TClassifiedImage>
void MarkovRandomFieldFilter<TInputImage, TClassifiedImage>::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << " MRF Image filter object " << std::endl;

  os << indent << " Number of classes: " << m_NumberOfClasses << std::endl;

  os << indent << " Maximum number of iterations: " << m_MaximumNumberOfIterations << std::endl;

  os << indent << " Error tolerance for convergence: " << m_ErrorTolerance << std::endl;

  os << indent << " Size of the MRF neighborhood radius:" << m_InputImageNeighborhoodRadius << std::endl;

  os << indent << "StopCondition: " << m_StopCondition << std::endl;

  os << indent << " Number of iterations: " << m_NumberOfIterations << std::endl;

  os << indent << " Lambda: " << m_Lambda << std::endl;
} // end PrintSelf

/**
 * GenerateInputRequestedRegion method.
 */
template <class TInputImage, class TClassifiedImage>
void MarkovRandomFieldFilter<TInputImage, TClassifiedImage>::GenerateInputRequestedRegion()
{
  // this filter requires the all of the input images
  // to be at the size of the output requested region
  InputImagePointer  inputPtr  = const_cast<InputImageType*>(this->GetInput());
  OutputImagePointer outputPtr = this->GetOutput();
  inputPtr->SetRequestedRegion(outputPtr->GetRequestedRegion());
}

/**
 * EnlargeOutputRequestedRegion method.
 */
template <class TInputImage, class TClassifiedImage>
void MarkovRandomFieldFilter<TInputImage, TClassifiedImage>::EnlargeOutputRequestedRegion(itk::DataObject* output)
{
  // this filter requires the all of the output image to be in
  // the buffer
  TClassifiedImage* imgData;
  imgData = dynamic_cast<TClassifiedImage*>(output);
  imgData->SetRequestedRegionToLargestPossibleRegion();
}

/**
 * GenerateOutputInformation method.
 */
template <class TInputImage, class TClassifiedImage>
void MarkovRandomFieldFilter<TInputImage, TClassifiedImage>::GenerateOutputInformation()
{
  typename TInputImage::ConstPointer input  = this->GetInput();
  typename TClassifiedImage::Pointer output = this->GetOutput();
  output->SetLargestPossibleRegion(input->GetLargestPossibleRegion());
}

template <class TInputImage, class TClassifiedImage>
void MarkovRandomFieldFilter<TInputImage, TClassifiedImage>::GenerateData()
{

  //   InputImageConstPointer inputImage = this->GetInput();

  // Allocate memory for the labelled images
  this->Allocate();

  // Branch the pipeline
  this->Initialize();

  // Run the Markov random field
  this->ApplyMarkovRandomFieldFilter();

} // end GenerateData

/**
* Set the neighborhood radius from a single value
*/
template <class TInputImage, class TClassifiedImage>
void MarkovRandomFieldFilter<TInputImage, TClassifiedImage>::SetNeighborhoodRadius(const unsigned long radiusValue)
{
  // Set up the neighbor hood
  NeighborhoodRadiusType radius;
  for (unsigned int i = 0; i < InputImageDimension; ++i)
  {
    radius[i] = radiusValue;
  }
  this->SetNeighborhoodRadius(radius);

} // end SetNeighborhoodRadius

/**
* Set the neighborhood radius from an array
*/
template <class TInputImage, class TClassifiedImage>
void MarkovRandomFieldFilter<TInputImage, TClassifiedImage>::SetNeighborhoodRadius(const unsigned long* radiusArray)
{
  NeighborhoodRadiusType radius;
  for (unsigned int i = 0; i < InputImageDimension; ++i)
  {
    radius[i] = radiusArray[i];
  }
  // Set up the neighbor hood
  this->SetNeighborhoodRadius(radius);

} // end SetNeighborhoodRadius

/**
* Set the neighborhood radius from a radius object
*/
template <class TInputImage, class TClassifiedImage>
void MarkovRandomFieldFilter<TInputImage, TClassifiedImage>::SetNeighborhoodRadius(const NeighborhoodRadiusType& radius)
{
  // Set up the neighbor hood
  for (unsigned int i = 0; i < InputImageDimension; ++i)
  {
    m_InputImageNeighborhoodRadius[i]    = radius[i];
    m_LabelledImageNeighborhoodRadius[i] = radius[i];
  }

} // end SetNeighborhoodRadius
//-------------------------------------------------------

/**
* Allocate algorithm specific resources
*/
template <class TInputImage, class TClassifiedImage>
void MarkovRandomFieldFilter<TInputImage, TClassifiedImage>::Allocate()
{
  // Set the output labelled and allocate the memory
  LabelledImagePointer outputPtr = this->GetOutput();

  // Allocate the output buffer memory
  outputPtr->SetBufferedRegion(outputPtr->GetRequestedRegion());
  outputPtr->Allocate();

  // Copy input data in the output buffer memory or
  // initialize to random values if not set
  LabelledImageRegionIterator outImageIt(outputPtr, outputPtr->GetRequestedRegion());

  if (m_ExternalClassificationSet)
  {
    typename TrainingImageType::ConstPointer trainingImage = this->GetTrainingInput();
    LabelledImageRegionConstIterator         trainingImageIt(trainingImage, outputPtr->GetRequestedRegion());

    while (!outImageIt.IsAtEnd())
    {
      LabelledImagePixelType labelvalue = static_cast<LabelledImagePixelType>(trainingImageIt.Get());

      outImageIt.Set(labelvalue);
      ++trainingImageIt;
      ++outImageIt;
    } // end while
  }
  else // set to random value
  {
    //       srand((unsigned)time(0));
    while (!outImageIt.IsAtEnd())
    {
      LabelledImagePixelType randomvalue = static_cast<LabelledImagePixelType>(m_Generator->GetIntegerVariate() % static_cast<int>(m_NumberOfClasses));
      outImageIt.Set(randomvalue);
      ++outImageIt;
    } // end while
  }

} // Allocate

/**
* Initialize pipeline and values
*/
template <class TInputImage, class TClassifiedImage>
void MarkovRandomFieldFilter<TInputImage, TClassifiedImage>::Initialize()
{

  m_ImageDeltaEnergy = 0.0;

  InputImageSizeType inputImageSize = this->GetInput()->GetBufferedRegion().GetSize();

  //---------------------------------------------------------------------
  // Get the number of valid pixels in the output MRF image
  //---------------------------------------------------------------------

  m_TotalNumberOfPixelsInInputImage       = 1;
  m_TotalNumberOfValidPixelsInOutputImage = 1;

  for (unsigned int i = 0; i < InputImageDimension; ++i)
  {
    m_TotalNumberOfPixelsInInputImage *= static_cast<int>(inputImageSize[i]);

    m_TotalNumberOfValidPixelsInOutputImage *= (static_cast<int>(inputImageSize[i]) - 2 * m_InputImageNeighborhoodRadius[i]);
  }

  srand((unsigned)time(nullptr));

  if (!m_EnergyRegularization)
  {
    itkExceptionMacro(<< "EnergyRegularization is not present");
  }

  if (!m_EnergyFidelity)
  {
    itkExceptionMacro(<< "EnergyFidelity is not present");
  }

  if (!m_Optimizer)
  {
    itkExceptionMacro(<< "Optimizer is not present");
  }

  if (!m_Sampler)
  {
    itkExceptionMacro(<< "Sampler is not present");
  }

  m_Sampler->SetLambda(m_Lambda);
  m_Sampler->SetEnergyRegularization(m_EnergyRegularization);
  m_Sampler->SetEnergyFidelity(m_EnergyFidelity);
  m_Sampler->SetNumberOfClasses(m_NumberOfClasses);
}

/**
*Apply the MRF image filter
*/
template <class TInputImage, class TClassifiedImage>
void MarkovRandomFieldFilter<TInputImage, TClassifiedImage>::ApplyMarkovRandomFieldFilter()
{

  // Note: error should be defined according to the number of valid pixel in the output
  int maxNumPixelError = itk::Math::Round<int, double>(m_ErrorTolerance * m_TotalNumberOfPixelsInInputImage);

  m_NumberOfIterations = 0;
  m_ErrorCounter       = m_TotalNumberOfValidPixelsInOutputImage;

  while ((m_NumberOfIterations < m_MaximumNumberOfIterations) && (m_ErrorCounter >= maxNumPixelError))
  {
    otbMsgDevMacro(<< "Iteration No." << m_NumberOfIterations);

    this->MinimizeOnce();

    otbMsgDevMacro(<< "m_ErrorCounter/m_TotalNumberOfPixelsInInputImage: " << m_ErrorCounter / ((double)(m_TotalNumberOfPixelsInInputImage)));
    otbMsgDevMacro(<< "m_ImageDeltaEnergy: " << m_ImageDeltaEnergy);

    ++m_NumberOfIterations;
  }

  otbMsgDevMacro(<< "m_NumberOfIterations: " << m_NumberOfIterations);
  otbMsgDevMacro(<< "m_MaximumNumberOfIterations: " << m_MaximumNumberOfIterations);
  otbMsgDevMacro(<< "m_ErrorCounter: " << m_ErrorCounter);
  otbMsgDevMacro(<< "maxNumPixelError: " << maxNumPixelError);

  // Determine stop condition
  if (m_NumberOfIterations >= m_MaximumNumberOfIterations)
  {
    m_StopCondition = MaximumNumberOfIterations;
  }
  else if (m_ErrorCounter <= maxNumPixelError)
  {
    m_StopCondition = ErrorTolerance;
  }

} // ApplyMarkovRandomFieldFilter

/**
*Apply the MRF image filter on the whole image once
*/
template <class TInputImage, class TClassifiedImage>
void MarkovRandomFieldFilter<TInputImage, TClassifiedImage>::MinimizeOnce()
{
  LabelledImageNeighborhoodIterator labelledIterator(m_LabelledImageNeighborhoodRadius, this->GetOutput(), this->GetOutput()->GetLargestPossibleRegion());
  InputImageNeighborhoodIterator    dataIterator(m_InputImageNeighborhoodRadius, this->GetInput(), this->GetInput()->GetLargestPossibleRegion());
  m_ErrorCounter = 0;

  for (labelledIterator.GoToBegin(), dataIterator.GoToBegin(); !labelledIterator.IsAtEnd(); ++labelledIterator, ++dataIterator)
  {

    LabelledImagePixelType value;
    bool                   changeValueBool;
    m_Sampler->Compute(dataIterator, labelledIterator);
    value           = m_Sampler->GetValue();
    changeValueBool = m_Optimizer->Compute(m_Sampler->GetDeltaEnergy());
    if (changeValueBool)
    {
      labelledIterator.SetCenterPixel(value);
      ++m_ErrorCounter;
      m_ImageDeltaEnergy += m_Sampler->GetDeltaEnergy();
    }
  }
}

} // namespace otb

#endif