File: otbBoostMachineLearningModel.h

package info (click to toggle)
otb 7.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,005,476 kB
  • sloc: cpp: 270,143; xml: 128,722; ansic: 4,367; sh: 1,768; python: 1,084; perl: 92; makefile: 72
file content (136 lines) | stat: -rw-r--r-- 4,826 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/*
 * Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbBoostMachineLearningModel_h
#define otbBoostMachineLearningModel_h

#include "otbRequiresOpenCVCheck.h"

#include "itkLightObject.h"
#include "itkFixedArray.h"
#include "otbMachineLearningModel.h"

#include "otbOpenCVUtils.h"

namespace otb
{
template <class TInputValue, class TTargetValue>
class ITK_EXPORT BoostMachineLearningModel : public MachineLearningModel<TInputValue, TTargetValue>
{
public:
  /** Standard class typedefs. */
  typedef BoostMachineLearningModel Self;
  typedef MachineLearningModel<TInputValue, TTargetValue> Superclass;
  typedef itk::SmartPointer<Self>       Pointer;
  typedef itk::SmartPointer<const Self> ConstPointer;

  typedef typename Superclass::InputValueType       InputValueType;
  typedef typename Superclass::InputSampleType      InputSampleType;
  typedef typename Superclass::InputListSampleType  InputListSampleType;
  typedef typename Superclass::TargetValueType      TargetValueType;
  typedef typename Superclass::TargetSampleType     TargetSampleType;
  typedef typename Superclass::TargetListSampleType TargetListSampleType;
  typedef typename Superclass::ConfidenceValueType  ConfidenceValueType;
  typedef typename Superclass::ProbaSampleType      ProbaSampleType;
  /** Run-time type information (and related methods). */
  itkNewMacro(Self);
  itkTypeMacro(BoostMachineLearningModel, MachineLearningModel);

  /** Setters/Getters to the Boost type
   *  It can be CvBoost::DISCRETE, CvBoost::REAL, CvBoost::LOGIT, CvBoost::GENTLE
   *  Default is CvBoost::REAL.
   *  \see http://docs.opencv.org/modules/ml/doc/boosting.html#cvboostparams-cvboostparams
   */
  itkGetMacro(BoostType, int);
  itkSetMacro(BoostType, int);

  /** Setters/Getters to the number of weak classifiers.
   *  Default is 100.
   *  \see http://docs.opencv.org/modules/ml/doc/boosting.html#cvboostparams-cvboostparams
   */
  itkGetMacro(WeakCount, int);
  itkSetMacro(WeakCount, int);

  /** Setters/Getters to the threshold WeightTrimRate.
   *  A threshold between 0 and 1 used to save computational time.
   *  Samples with summary weight \f$ w \leq 1 - WeightTrimRate \f$ do not participate in the next iteration of training.
   *  Set this parameter to 0 to turn off this functionality.
   *  Default is 0.95
   *  \see http://docs.opencv.org/modules/ml/doc/boosting.html#cvboostparams-cvboostparams
   */
  itkGetMacro(WeightTrimRate, double);
  itkSetMacro(WeightTrimRate, double);

  /** Setters/Getters to the maximum depth of the tree.
   * Default is 1
   * \see http://docs.opencv.org/modules/ml/doc/decision_trees.html#CvDTreeParams::CvDTreeParams%28%29
   */
  itkGetMacro(MaxDepth, int);
  itkSetMacro(MaxDepth, int);

  /** Train the machine learning model */
  void Train() override;

  /** Save the model to file */
  void Save(const std::string& filename, const std::string& name = "") override;

  /** Load the model from file */
  void Load(const std::string& filename, const std::string& name = "") override;

  /**\name Classification model file compatibility tests */
  //@{
  /** Is the input model file readable and compatible with the corresponding classifier ? */
  bool CanReadFile(const std::string&) override;

  /** Is the input model file writable and compatible with the corresponding classifier ? */
  bool CanWriteFile(const std::string&) override;
  //@}

protected:
  /** Constructor */
  BoostMachineLearningModel();

  /** Destructor */
  ~BoostMachineLearningModel() override = default;

  /** Predict values using the model */
  TargetSampleType DoPredict(const InputSampleType& input, ConfidenceValueType* quality = nullptr, ProbaSampleType* proba = nullptr) const override;

  /** PrintSelf method */
  void PrintSelf(std::ostream& os, itk::Indent indent) const override;

private:
  BoostMachineLearningModel(const Self&) = delete;
  void operator=(const Self&) = delete;

  cv::Ptr<cv::ml::Boost> m_BoostModel;

  int    m_BoostType;
  int    m_WeakCount;
  double m_WeightTrimRate;
  int    m_MaxDepth;
};
} // end namespace otb

#ifndef OTB_MANUAL_INSTANTIATION
#include "otbBoostMachineLearningModel.hxx"
#endif

#endif