1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
/*
* Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbBoostMachineLearningModel_h
#define otbBoostMachineLearningModel_h
#include "otbRequiresOpenCVCheck.h"
#include "itkLightObject.h"
#include "itkFixedArray.h"
#include "otbMachineLearningModel.h"
#include "otbOpenCVUtils.h"
namespace otb
{
template <class TInputValue, class TTargetValue>
class ITK_EXPORT BoostMachineLearningModel : public MachineLearningModel<TInputValue, TTargetValue>
{
public:
/** Standard class typedefs. */
typedef BoostMachineLearningModel Self;
typedef MachineLearningModel<TInputValue, TTargetValue> Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
typedef typename Superclass::InputValueType InputValueType;
typedef typename Superclass::InputSampleType InputSampleType;
typedef typename Superclass::InputListSampleType InputListSampleType;
typedef typename Superclass::TargetValueType TargetValueType;
typedef typename Superclass::TargetSampleType TargetSampleType;
typedef typename Superclass::TargetListSampleType TargetListSampleType;
typedef typename Superclass::ConfidenceValueType ConfidenceValueType;
typedef typename Superclass::ProbaSampleType ProbaSampleType;
/** Run-time type information (and related methods). */
itkNewMacro(Self);
itkTypeMacro(BoostMachineLearningModel, MachineLearningModel);
/** Setters/Getters to the Boost type
* It can be CvBoost::DISCRETE, CvBoost::REAL, CvBoost::LOGIT, CvBoost::GENTLE
* Default is CvBoost::REAL.
* \see http://docs.opencv.org/modules/ml/doc/boosting.html#cvboostparams-cvboostparams
*/
itkGetMacro(BoostType, int);
itkSetMacro(BoostType, int);
/** Setters/Getters to the number of weak classifiers.
* Default is 100.
* \see http://docs.opencv.org/modules/ml/doc/boosting.html#cvboostparams-cvboostparams
*/
itkGetMacro(WeakCount, int);
itkSetMacro(WeakCount, int);
/** Setters/Getters to the threshold WeightTrimRate.
* A threshold between 0 and 1 used to save computational time.
* Samples with summary weight \f$ w \leq 1 - WeightTrimRate \f$ do not participate in the next iteration of training.
* Set this parameter to 0 to turn off this functionality.
* Default is 0.95
* \see http://docs.opencv.org/modules/ml/doc/boosting.html#cvboostparams-cvboostparams
*/
itkGetMacro(WeightTrimRate, double);
itkSetMacro(WeightTrimRate, double);
/** Setters/Getters to the maximum depth of the tree.
* Default is 1
* \see http://docs.opencv.org/modules/ml/doc/decision_trees.html#CvDTreeParams::CvDTreeParams%28%29
*/
itkGetMacro(MaxDepth, int);
itkSetMacro(MaxDepth, int);
/** Train the machine learning model */
void Train() override;
/** Save the model to file */
void Save(const std::string& filename, const std::string& name = "") override;
/** Load the model from file */
void Load(const std::string& filename, const std::string& name = "") override;
/**\name Classification model file compatibility tests */
//@{
/** Is the input model file readable and compatible with the corresponding classifier ? */
bool CanReadFile(const std::string&) override;
/** Is the input model file writable and compatible with the corresponding classifier ? */
bool CanWriteFile(const std::string&) override;
//@}
protected:
/** Constructor */
BoostMachineLearningModel();
/** Destructor */
~BoostMachineLearningModel() override = default;
/** Predict values using the model */
TargetSampleType DoPredict(const InputSampleType& input, ConfidenceValueType* quality = nullptr, ProbaSampleType* proba = nullptr) const override;
/** PrintSelf method */
void PrintSelf(std::ostream& os, itk::Indent indent) const override;
private:
BoostMachineLearningModel(const Self&) = delete;
void operator=(const Self&) = delete;
cv::Ptr<cv::ml::Boost> m_BoostModel;
int m_BoostType;
int m_WeakCount;
double m_WeightTrimRate;
int m_MaxDepth;
};
} // end namespace otb
#ifndef OTB_MANUAL_INSTANTIATION
#include "otbBoostMachineLearningModel.hxx"
#endif
#endif
|