1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
/*
* Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbDecisionTreeMachineLearningModel_hxx
#define otbDecisionTreeMachineLearningModel_hxx
#include "otbDecisionTreeMachineLearningModel.h"
#include "otbOpenCVUtils.h"
#include <fstream>
#include "itkMacro.h"
namespace otb
{
template <class TInputValue, class TOutputValue>
DecisionTreeMachineLearningModel<TInputValue, TOutputValue>::DecisionTreeMachineLearningModel()
:
m_DTreeModel(cv::ml::DTrees::create()),
m_MaxDepth(10),
m_MinSampleCount(10),
m_RegressionAccuracy(0.01),
m_UseSurrogates(false),
m_MaxCategories(10),
m_Use1seRule(true),
m_TruncatePrunedTree(true)
{
this->m_IsRegressionSupported = true;
}
/** Train the machine learning model */
template <class TInputValue, class TOutputValue>
void DecisionTreeMachineLearningModel<TInputValue, TOutputValue>::Train()
{
// convert listsample to opencv matrix
cv::Mat samples;
otb::ListSampleToMat<InputListSampleType>(this->GetInputListSample(), samples);
cv::Mat labels;
otb::ListSampleToMat<TargetListSampleType>(this->GetTargetListSample(), labels);
cv::Mat var_type = cv::Mat(this->GetInputListSample()->GetMeasurementVectorSize() + 1, 1, CV_8U);
var_type.setTo(cv::Scalar(CV_VAR_NUMERICAL)); // all inputs are numerical
if (!this->m_RegressionMode) // Classification
var_type.at<uchar>(this->GetInputListSample()->GetMeasurementVectorSize(), 0) = CV_VAR_CATEGORICAL;
m_DTreeModel->setMaxDepth(m_MaxDepth);
m_DTreeModel->setMinSampleCount(m_MinSampleCount);
m_DTreeModel->setRegressionAccuracy(m_RegressionAccuracy);
m_DTreeModel->setUseSurrogates(m_UseSurrogates);
// CvFold is not exposed because it crashes in OpenCV 3 and 4
m_DTreeModel->setCVFolds(0);
m_DTreeModel->setMaxCategories(m_MaxCategories);
m_DTreeModel->setUse1SERule(m_Use1seRule);
m_DTreeModel->setTruncatePrunedTree(m_TruncatePrunedTree);
m_DTreeModel->setPriors(cv::Mat(m_Priors));
m_DTreeModel->train(cv::ml::TrainData::create(samples, cv::ml::ROW_SAMPLE, labels, cv::noArray(), cv::noArray(), cv::noArray(), var_type));
}
template <class TInputValue, class TOutputValue>
typename DecisionTreeMachineLearningModel<TInputValue, TOutputValue>::TargetSampleType
DecisionTreeMachineLearningModel<TInputValue, TOutputValue>::DoPredict(const InputSampleType& input, ConfidenceValueType* quality, ProbaSampleType* proba) const
{
TargetSampleType target;
// convert listsample to Mat
cv::Mat sample;
otb::SampleToMat<InputSampleType>(input, sample);
double result = m_DTreeModel->predict(sample);
target[0] = static_cast<TOutputValue>(result);
if (quality != nullptr)
{
if (!this->m_ConfidenceIndex)
{
itkExceptionMacro("Confidence index not available for this classifier !");
}
}
if (proba != nullptr && !this->m_ProbaIndex)
itkExceptionMacro("Probability per class not available for this classifier !");
return target;
}
template <class TInputValue, class TOutputValue>
void DecisionTreeMachineLearningModel<TInputValue, TOutputValue>::Save(const std::string& filename, const std::string& name)
{
cv::FileStorage fs(filename, cv::FileStorage::WRITE);
fs << (name.empty() ? m_DTreeModel->getDefaultName() : cv::String(name)) << "{";
m_DTreeModel->write(fs);
fs << "}";
fs.release();
}
template <class TInputValue, class TOutputValue>
void DecisionTreeMachineLearningModel<TInputValue, TOutputValue>::Load(const std::string& filename, const std::string& name)
{
cv::FileStorage fs(filename, cv::FileStorage::READ);
m_DTreeModel->read(name.empty() ? fs.getFirstTopLevelNode() : fs[name]);
}
template <class TInputValue, class TOutputValue>
bool DecisionTreeMachineLearningModel<TInputValue, TOutputValue>::CanReadFile(const std::string& file)
{
std::ifstream ifs;
ifs.open(file);
if (!ifs)
{
std::cerr << "Could not read file " << file << std::endl;
return false;
}
while (!ifs.eof())
{
std::string line;
std::getline(ifs, line);
// if (line.find(m_SVMModel->getName()) != std::string::npos)
if (line.find(CV_TYPE_NAME_ML_TREE) != std::string::npos || line.find(m_DTreeModel->getDefaultName()) != std::string::npos)
{
return true;
}
}
ifs.close();
return false;
}
template <class TInputValue, class TOutputValue>
bool DecisionTreeMachineLearningModel<TInputValue, TOutputValue>::CanWriteFile(const std::string& itkNotUsed(file))
{
return false;
}
template <class TInputValue, class TOutputValue>
void DecisionTreeMachineLearningModel<TInputValue, TOutputValue>::PrintSelf(std::ostream& os, itk::Indent indent) const
{
// Call superclass implementation
Superclass::PrintSelf(os, indent);
}
} // end namespace otb
#endif
|