File: otbNeuralNetworkMachineLearningModel.hxx

package info (click to toggle)
otb 7.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,005,476 kB
  • sloc: cpp: 270,143; xml: 128,722; ansic: 4,367; sh: 1,768; python: 1,084; perl: 92; makefile: 72
file content (307 lines) | stat: -rw-r--r-- 9,860 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
/*
 * Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbNeuralNetworkMachineLearningModel_hxx
#define otbNeuralNetworkMachineLearningModel_hxx

#include <fstream>
#include "otbNeuralNetworkMachineLearningModel.h"
#include "itkMacro.h" // itkExceptionMacro

namespace otb
{

template <class TInputValue, class TOutputValue>
NeuralNetworkMachineLearningModel<TInputValue, TOutputValue>::NeuralNetworkMachineLearningModel()
  :
    m_ANNModel(cv::ml::ANN_MLP::create()),
    m_TrainMethod(CvANN_MLP_TrainParams::RPROP),
    m_ActivateFunction(CvANN_MLP::SIGMOID_SYM),
    m_Alpha(1.),
    m_Beta(1.),
    m_BackPropDWScale(0.1),
    m_BackPropMomentScale(0.1),
    m_RegPropDW0(0.1),
    m_RegPropDWMin(FLT_EPSILON),
    m_TermCriteriaType(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS),
    m_MaxIter(1000),
    m_Epsilon(0.01)
{
  this->m_ConfidenceIndex       = true;
  this->m_IsRegressionSupported = true;
}

/** Sets the topology of the NN */
template <class TInputValue, class TOutputValue>
void NeuralNetworkMachineLearningModel<TInputValue, TOutputValue>::SetLayerSizes(const std::vector<unsigned int> layers)
{
  const unsigned int nbLayers = layers.size();
  if (nbLayers < 3)
    itkExceptionMacro(<< "Number of layers in the Neural Network must be >= 3")

        m_LayerSizes = layers;
}

/** Converts a ListSample of VariableLengthVector to a CvMat. The user
 *  is responsible for freeing the output pointer with the
 *  cvReleaseMat function.  A null pointer is resturned in case the
 *  conversion failed.
 */
template <class TInputValue, class TOutputValue>
void NeuralNetworkMachineLearningModel<TInputValue, TOutputValue>::LabelsToMat(const TargetListSampleType* labels, cv::Mat& output)
{
  unsigned int nbSamples = 0;
  if (labels != nullptr)
  {
    nbSamples = labels->Size();
  }

  // Check for valid listSample
  if (nbSamples > 0)
  {
    // Build an iterator
    typename TargetListSampleType::ConstIterator labelSampleIt = labels->Begin();

    TargetValueType classLabel;
    for (; labelSampleIt != labels->End(); ++labelSampleIt)
    {
      // Retrieve labelSample
      typename TargetListSampleType::MeasurementVectorType labelSample = labelSampleIt.GetMeasurementVector();
      classLabel                                                       = labelSample[0];
      if (m_MapOfLabels.count(classLabel) == 0)
      {
        m_MapOfLabels[classLabel] = -1;
      }
    }

    unsigned int nbClasses = m_MapOfLabels.size();

    m_MatrixOfLabels = cv::Mat(1,nbClasses, CV_32FC1);
    unsigned int itLabel = 0;
    for (auto& kv : m_MapOfLabels)
    {
      classLabel = kv.first;
      kv.second = itLabel;
      m_MatrixOfLabels.at<float>(0,itLabel) = classLabel;
      ++itLabel;
    }

    // Sample index
    unsigned int sampleIdx = 0;
    labelSampleIt          = labels->Begin();
    output.create(nbSamples, nbClasses, CV_32FC1);
    output.setTo(-m_Beta);
    // Fill the cv matrix
    for (; labelSampleIt != labels->End(); ++labelSampleIt, ++sampleIdx)
    {
      // Retrieve labelSample
      typename TargetListSampleType::MeasurementVectorType labelSample = labelSampleIt.GetMeasurementVector();
      classLabel                                                       = labelSample[0];
      unsigned int indexLabel                                          = m_MapOfLabels[classLabel];
      output.at<float>(sampleIdx, indexLabel) = m_Beta;
    }
  }
}

template <class TInputValue, class TOutputValue>
void NeuralNetworkMachineLearningModel<TInputValue, TOutputValue>::CreateNetwork()
{
  // Create the neural network
  const unsigned int nbLayers = m_LayerSizes.size();

  if (nbLayers == 0)
    itkExceptionMacro(<< "Number of layers in the Neural Network must be >= 3")

        cv::Mat layers = cv::Mat(nbLayers, 1, CV_32SC1);
  for (unsigned int i = 0; i < nbLayers; i++)
  {
    layers.row(i) = m_LayerSizes[i];
  }

  m_ANNModel->setLayerSizes(layers);
  m_ANNModel->setActivationFunction(m_ActivateFunction, m_Alpha, m_Beta);
}


template <class TInputValue, class TOutputValue>
void NeuralNetworkMachineLearningModel<TInputValue, TOutputValue>::SetupNetworkAndTrain(cv::Mat& labels)
{
  // convert listsample to opencv matrix
  cv::Mat samples;
  otb::ListSampleToMat<InputListSampleType>(this->GetInputListSample(), samples);
  this->CreateNetwork();
  int flags = (this->m_RegressionMode ? 0 : cv::ml::ANN_MLP::NO_OUTPUT_SCALE);
  m_ANNModel->setTrainMethod(m_TrainMethod);
  m_ANNModel->setBackpropMomentumScale(m_BackPropMomentScale);
  m_ANNModel->setBackpropWeightScale(m_BackPropDWScale);
  m_ANNModel->setRpropDW0(m_RegPropDW0);
  // m_ANNModel->setRpropDWMax( );
  m_ANNModel->setRpropDWMin(m_RegPropDWMin);
  // m_ANNModel->setRpropDWMinus( );
  // m_ANNModel->setRpropDWPlus( );
  m_ANNModel->setTermCriteria(cv::TermCriteria(m_TermCriteriaType, m_MaxIter, m_Epsilon));
  m_ANNModel->train(cv::ml::TrainData::create(samples, cv::ml::ROW_SAMPLE, labels), flags);
}

/** Train the machine learning model for classification*/
template <class TInputValue, class TOutputValue>
void NeuralNetworkMachineLearningModel<TInputValue, TOutputValue>::Train()
{
  // Transform the targets into a matrix of labels
  cv::Mat matOutputANN;
  if (this->m_RegressionMode)
  {
    // MODE REGRESSION
    otb::ListSampleToMat<TargetListSampleType>(this->GetTargetListSample(), matOutputANN);
  }
  else
  {
    // MODE CLASSIFICATION : store the map between internal labels and output labels
    LabelsToMat(this->GetTargetListSample(), matOutputANN);
  }
  this->SetupNetworkAndTrain(matOutputANN);
}

template <class TInputValue, class TOutputValue>
typename NeuralNetworkMachineLearningModel<TInputValue, TOutputValue>::TargetSampleType
NeuralNetworkMachineLearningModel<TInputValue, TOutputValue>::DoPredict(const InputSampleType& input, ConfidenceValueType* quality,
                                                                        ProbaSampleType* proba) const
{
  TargetSampleType target;
  // convert listsample to Mat
  cv::Mat sample;

  otb::SampleToMat<InputSampleType>(input, sample);

  cv::Mat response; //(1, 1, CV_32FC1);
  m_ANNModel->predict(sample, response);

  float currentResponse = 0;
  float maxResponse     = response.at<float>(0, 0);

  if (this->m_RegressionMode)
  {
    // MODE REGRESSION : only output first response
    target[0] = maxResponse;
    return target;
  }

  // MODE CLASSIFICATION : find the highest response
  float secondResponse = -1e10;

  target[0] = m_MatrixOfLabels.at<TOutputValue>(0);
  unsigned int nbClasses = m_MatrixOfLabels.size[1];

  for (unsigned itLabel = 1; itLabel < nbClasses; ++itLabel)
  {
    currentResponse = response.at<float>(0, itLabel);
    if (currentResponse > maxResponse)
    {
      secondResponse = maxResponse;

      maxResponse = currentResponse;
      target[0] = m_MatrixOfLabels.at<TOutputValue>(itLabel);
    }
    else
    {
      if (currentResponse > secondResponse)
      {
        secondResponse = currentResponse;
      }
    }
  }

  if (quality != nullptr)
  {
    (*quality) = static_cast<ConfidenceValueType>(maxResponse) - static_cast<ConfidenceValueType>(secondResponse);
  }
  if (proba != nullptr && !this->m_ProbaIndex)
    itkExceptionMacro("Probability per class not available for this classifier !");

  return target;
}

template <class TInputValue, class TOutputValue>
void NeuralNetworkMachineLearningModel<TInputValue, TOutputValue>::Save(const std::string& filename, const std::string& name)
{
  cv::FileStorage fs(filename, cv::FileStorage::WRITE);
  fs << (name.empty() ? m_ANNModel->getDefaultName() : cv::String(name)) << "{";
  m_ANNModel->write(fs);

  if (!m_MatrixOfLabels.empty())
  {
    fs << "class_labels" << m_MatrixOfLabels;
  }
  fs << "}";
  fs.release();
}

template <class TInputValue, class TOutputValue>
void NeuralNetworkMachineLearningModel<TInputValue, TOutputValue>::Load(const std::string& filename, const std::string& name)
{
  cv::FileStorage fs(filename, cv::FileStorage::READ);
  cv::FileNode    model_node(name.empty() ? fs.getFirstTopLevelNode() : fs[name]);
  m_ANNModel->read(model_node);
  model_node["class_labels"] >> m_MatrixOfLabels;
  fs.release();
}

template <class TInputValue, class TOutputValue>
bool NeuralNetworkMachineLearningModel<TInputValue, TOutputValue>::CanReadFile(const std::string& file)
{
  std::ifstream ifs;
  ifs.open(file);

  if (!ifs)
  {
    std::cerr << "Could not read file " << file << std::endl;
    return false;
  }

  while (!ifs.eof())
  {
    std::string line;
    std::getline(ifs, line);

    if (line.find(CV_TYPE_NAME_ML_ANN_MLP) != std::string::npos || line.find(m_ANNModel->getDefaultName()) != std::string::npos)
    {
      return true;
    }
  }
  ifs.close();
  return false;
}

template <class TInputValue, class TOutputValue>
bool NeuralNetworkMachineLearningModel<TInputValue, TOutputValue>::CanWriteFile(const std::string& itkNotUsed(file))
{
  return false;
}

template <class TInputValue, class TOutputValue>
void NeuralNetworkMachineLearningModel<TInputValue, TOutputValue>::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  // Call superclass implementation
  Superclass::PrintSelf(os, indent);
}

} // end namespace otb

#endif