1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
/*
* Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbNormalBayesMachineLearningModel_hxx
#define otbNormalBayesMachineLearningModel_hxx
#include <fstream>
#include "itkMacro.h"
#include "otbNormalBayesMachineLearningModel.h"
#include "otbOpenCVUtils.h"
namespace otb
{
template <class TInputValue, class TOutputValue>
NormalBayesMachineLearningModel<TInputValue, TOutputValue>::NormalBayesMachineLearningModel()
: m_NormalBayesModel(cv::ml::NormalBayesClassifier::create())
{
}
/** Train the machine learning model */
template <class TInputValue, class TOutputValue>
void NormalBayesMachineLearningModel<TInputValue, TOutputValue>::Train()
{
// convert listsample to opencv matrix
cv::Mat samples;
otb::ListSampleToMat<InputListSampleType>(this->GetInputListSample(), samples);
cv::Mat labels;
otb::ListSampleToMat<TargetListSampleType>(this->GetTargetListSample(), labels);
cv::Mat var_type = cv::Mat(this->GetInputListSample()->GetMeasurementVectorSize() + 1, 1, CV_8U);
var_type.setTo(cv::Scalar(CV_VAR_NUMERICAL)); // all inputs are numerical
var_type.at<uchar>(this->GetInputListSample()->GetMeasurementVectorSize(), 0) = CV_VAR_CATEGORICAL;
m_NormalBayesModel->train(cv::ml::TrainData::create(samples, cv::ml::ROW_SAMPLE, labels, cv::noArray(), cv::noArray(), cv::noArray(), var_type));
}
template <class TInputValue, class TOutputValue>
typename NormalBayesMachineLearningModel<TInputValue, TOutputValue>::TargetSampleType
NormalBayesMachineLearningModel<TInputValue, TOutputValue>::DoPredict(const InputSampleType& input, ConfidenceValueType* quality, ProbaSampleType* proba) const
{
TargetSampleType target;
// convert listsample to Mat
cv::Mat sample;
otb::SampleToMat<InputSampleType>(input, sample);
cv::Mat missing = cv::Mat(1, input.Size(), CV_8U);
missing.setTo(0);
double result = m_NormalBayesModel->predict(sample);
target[0] = static_cast<TOutputValue>(result);
if (quality != nullptr)
{
if (!this->HasConfidenceIndex())
{
itkExceptionMacro("Confidence index not available for this classifier !");
}
}
if (proba != nullptr && !this->m_ProbaIndex)
itkExceptionMacro("Probability per class not available for this classifier !");
return target;
}
template <class TInputValue, class TOutputValue>
void NormalBayesMachineLearningModel<TInputValue, TOutputValue>::Save(const std::string& filename, const std::string& name)
{
cv::FileStorage fs(filename, cv::FileStorage::WRITE);
fs << (name.empty() ? m_NormalBayesModel->getDefaultName() : cv::String(name)) << "{";
m_NormalBayesModel->write(fs);
fs << "}";
fs.release();
}
template <class TInputValue, class TOutputValue>
void NormalBayesMachineLearningModel<TInputValue, TOutputValue>::Load(const std::string& filename, const std::string& name)
{
cv::FileStorage fs(filename, cv::FileStorage::READ);
m_NormalBayesModel->read(name.empty() ? fs.getFirstTopLevelNode() : fs[name]);
}
template <class TInputValue, class TOutputValue>
bool NormalBayesMachineLearningModel<TInputValue, TOutputValue>::CanReadFile(const std::string& file)
{
std::ifstream ifs;
ifs.open(file);
if (!ifs)
{
std::cerr << "Could not read file " << file << std::endl;
return false;
}
while (!ifs.eof())
{
std::string line;
std::getline(ifs, line);
if (line.find(CV_TYPE_NAME_ML_NBAYES) != std::string::npos || line.find(m_NormalBayesModel->getDefaultName()) != std::string::npos)
{
return true;
}
}
ifs.close();
return false;
}
template <class TInputValue, class TOutputValue>
bool NormalBayesMachineLearningModel<TInputValue, TOutputValue>::CanWriteFile(const std::string& itkNotUsed(file))
{
return false;
}
template <class TInputValue, class TOutputValue>
void NormalBayesMachineLearningModel<TInputValue, TOutputValue>::PrintSelf(std::ostream& os, itk::Indent indent) const
{
// Call superclass implementation
Superclass::PrintSelf(os, indent);
}
} // end namespace otb
#endif
|