File: otbNormalBayesMachineLearningModel.hxx

package info (click to toggle)
otb 7.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,005,476 kB
  • sloc: cpp: 270,143; xml: 128,722; ansic: 4,367; sh: 1,768; python: 1,084; perl: 92; makefile: 72
file content (144 lines) | stat: -rw-r--r-- 4,658 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/*
 * Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbNormalBayesMachineLearningModel_hxx
#define otbNormalBayesMachineLearningModel_hxx

#include <fstream>
#include "itkMacro.h"
#include "otbNormalBayesMachineLearningModel.h"
#include "otbOpenCVUtils.h"

namespace otb
{

template <class TInputValue, class TOutputValue>
NormalBayesMachineLearningModel<TInputValue, TOutputValue>::NormalBayesMachineLearningModel()
  : m_NormalBayesModel(cv::ml::NormalBayesClassifier::create())
{
}

/** Train the machine learning model */
template <class TInputValue, class TOutputValue>
void NormalBayesMachineLearningModel<TInputValue, TOutputValue>::Train()
{
  // convert listsample to opencv matrix
  cv::Mat samples;
  otb::ListSampleToMat<InputListSampleType>(this->GetInputListSample(), samples);

  cv::Mat labels;
  otb::ListSampleToMat<TargetListSampleType>(this->GetTargetListSample(), labels);

  cv::Mat var_type = cv::Mat(this->GetInputListSample()->GetMeasurementVectorSize() + 1, 1, CV_8U);
  var_type.setTo(cv::Scalar(CV_VAR_NUMERICAL)); // all inputs are numerical
  var_type.at<uchar>(this->GetInputListSample()->GetMeasurementVectorSize(), 0) = CV_VAR_CATEGORICAL;

  m_NormalBayesModel->train(cv::ml::TrainData::create(samples, cv::ml::ROW_SAMPLE, labels, cv::noArray(), cv::noArray(), cv::noArray(), var_type));
}

template <class TInputValue, class TOutputValue>
typename NormalBayesMachineLearningModel<TInputValue, TOutputValue>::TargetSampleType
NormalBayesMachineLearningModel<TInputValue, TOutputValue>::DoPredict(const InputSampleType& input, ConfidenceValueType* quality, ProbaSampleType* proba) const
{
  TargetSampleType target;

  // convert listsample to Mat
  cv::Mat sample;

  otb::SampleToMat<InputSampleType>(input, sample);

  cv::Mat missing = cv::Mat(1, input.Size(), CV_8U);
  missing.setTo(0);
  double result = m_NormalBayesModel->predict(sample);

  target[0] = static_cast<TOutputValue>(result);

  if (quality != nullptr)
  {
    if (!this->HasConfidenceIndex())
    {
      itkExceptionMacro("Confidence index not available for this classifier !");
    }
  }
  if (proba != nullptr && !this->m_ProbaIndex)
    itkExceptionMacro("Probability per class not available for this classifier !");

  return target;
}

template <class TInputValue, class TOutputValue>
void NormalBayesMachineLearningModel<TInputValue, TOutputValue>::Save(const std::string& filename, const std::string& name)
{
  cv::FileStorage fs(filename, cv::FileStorage::WRITE);
  fs << (name.empty() ? m_NormalBayesModel->getDefaultName() : cv::String(name)) << "{";
  m_NormalBayesModel->write(fs);
  fs << "}";
  fs.release();
}

template <class TInputValue, class TOutputValue>
void NormalBayesMachineLearningModel<TInputValue, TOutputValue>::Load(const std::string& filename, const std::string& name)
{
  cv::FileStorage fs(filename, cv::FileStorage::READ);
  m_NormalBayesModel->read(name.empty() ? fs.getFirstTopLevelNode() : fs[name]);
}

template <class TInputValue, class TOutputValue>
bool NormalBayesMachineLearningModel<TInputValue, TOutputValue>::CanReadFile(const std::string& file)
{
  std::ifstream ifs;
  ifs.open(file);

  if (!ifs)
  {
    std::cerr << "Could not read file " << file << std::endl;
    return false;
  }

  while (!ifs.eof())
  {
    std::string line;
    std::getline(ifs, line);

    if (line.find(CV_TYPE_NAME_ML_NBAYES) != std::string::npos || line.find(m_NormalBayesModel->getDefaultName()) != std::string::npos)
    {
      return true;
    }
  }
  ifs.close();
  return false;
}

template <class TInputValue, class TOutputValue>
bool NormalBayesMachineLearningModel<TInputValue, TOutputValue>::CanWriteFile(const std::string& itkNotUsed(file))
{
  return false;
}

template <class TInputValue, class TOutputValue>
void NormalBayesMachineLearningModel<TInputValue, TOutputValue>::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  // Call superclass implementation
  Superclass::PrintSelf(os, indent);
}

} // end namespace otb

#endif