File: otbRandomForestsMachineLearningModel.hxx

package info (click to toggle)
otb 7.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,005,476 kB
  • sloc: cpp: 270,143; xml: 128,722; ansic: 4,367; sh: 1,768; python: 1,084; perl: 92; makefile: 72
file content (217 lines) | stat: -rw-r--r-- 7,638 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/*
 * Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbRandomForestsMachineLearningModel_hxx
#define otbRandomForestsMachineLearningModel_hxx

#include <fstream>
#include "itkMacro.h"
#include "otbRandomForestsMachineLearningModel.h"
#include "otbOpenCVUtils.h"

namespace otb
{

template <class TInputValue, class TOutputValue>
RandomForestsMachineLearningModel<TInputValue, TOutputValue>::RandomForestsMachineLearningModel()
  :
    m_RFModel(CvRTreesWrapper::create()),
    m_MaxDepth(5),
    m_MinSampleCount(10),
    m_RegressionAccuracy(0.01),
    m_ComputeSurrogateSplit(false),
    m_MaxNumberOfCategories(10),
    m_CalculateVariableImportance(false),
    m_MaxNumberOfVariables(0),
    m_MaxNumberOfTrees(100),
    m_ForestAccuracy(0.01),
    m_TerminationCriteria(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS), // identic for v3 ?
    m_ComputeMargin(false)
{
  this->m_ConfidenceIndex       = true;
  this->m_ProbaIndex            = false;
  this->m_IsRegressionSupported = true;
}

template <class TInputValue, class TOutputValue>
float RandomForestsMachineLearningModel<TInputValue, TOutputValue>::GetTrainError()
{
  // TODO
  cv::Mat samples;
  otb::ListSampleToMat<InputListSampleType>(this->GetInputListSample(), samples);

  cv::Mat labels;
  otb::ListSampleToMat<TargetListSampleType>(this->GetTargetListSample(), labels);

  cv::Mat var_type = cv::Mat(this->GetInputListSample()->GetMeasurementVectorSize() + 1, 1, CV_8U);
  var_type.setTo(cv::Scalar(CV_VAR_NUMERICAL)); // all inputs are numerical

  if (this->m_RegressionMode)
    var_type.at<uchar>(this->GetInputListSample()->GetMeasurementVectorSize(), 0) = CV_VAR_NUMERICAL;
  else
    var_type.at<uchar>(this->GetInputListSample()->GetMeasurementVectorSize(), 0) = CV_VAR_CATEGORICAL;

  return m_RFModel->calcError(cv::ml::TrainData::create(samples, cv::ml::ROW_SAMPLE, labels, cv::noArray(), cv::noArray(), cv::noArray(), var_type), false,
                              cv::noArray());
}

/** Train the machine learning model */
template <class TInputValue, class TOutputValue>
void RandomForestsMachineLearningModel<TInputValue, TOutputValue>::Train()
{
  // convert listsample to opencv matrix
  cv::Mat samples;
  otb::ListSampleToMat<InputListSampleType>(this->GetInputListSample(), samples);

  cv::Mat labels;
  otb::ListSampleToMat<TargetListSampleType>(this->GetTargetListSample(), labels);

  cv::Mat var_type = cv::Mat(this->GetInputListSample()->GetMeasurementVectorSize() + 1, 1, CV_8U);
  var_type.setTo(cv::Scalar(CV_VAR_NUMERICAL)); // all inputs are numerical

  if (this->m_RegressionMode)
    var_type.at<uchar>(this->GetInputListSample()->GetMeasurementVectorSize(), 0) = CV_VAR_NUMERICAL;
  else
    var_type.at<uchar>(this->GetInputListSample()->GetMeasurementVectorSize(), 0) = CV_VAR_CATEGORICAL;

// Mat var_type = Mat(ATTRIBUTES_PER_SAMPLE + 1, 1, CV_8U );
// std::cout << "priors " << m_Priors[0] << std::endl;
// Define random forests paramneters
// FIXME do this in the constructor?
  m_RFModel->setMaxDepth(m_MaxDepth);
  m_RFModel->setMinSampleCount(m_MinSampleCount);
  m_RFModel->setRegressionAccuracy(m_RegressionAccuracy);
  m_RFModel->setUseSurrogates(m_ComputeSurrogateSplit);
  m_RFModel->setMaxCategories(m_MaxNumberOfCategories);
  m_RFModel->setPriors(cv::Mat(m_Priors)); // TODO
  m_RFModel->setCalculateVarImportance(m_CalculateVariableImportance);
  m_RFModel->setActiveVarCount(m_MaxNumberOfVariables);
  m_RFModel->setTermCriteria(cv::TermCriteria(m_TerminationCriteria, m_MaxNumberOfTrees, m_ForestAccuracy));
  m_RFModel->train(cv::ml::TrainData::create(samples, cv::ml::ROW_SAMPLE, labels, cv::noArray(), cv::noArray(), cv::noArray(), var_type));
}

template <class TInputValue, class TOutputValue>
typename RandomForestsMachineLearningModel<TInputValue, TOutputValue>::TargetSampleType
RandomForestsMachineLearningModel<TInputValue, TOutputValue>::DoPredict(const InputSampleType& value, ConfidenceValueType* quality,
                                                                        ProbaSampleType* proba) const
{
  // std::cout << "Enter predict" << std::endl;
  TargetSampleType target;
  // convert listsample to Mat
  cv::Mat sample;

  otb::SampleToMat<InputSampleType>(value, sample);

  double result = m_RFModel->predict(sample);

  target[0] = static_cast<TOutputValue>(result);

  if (quality != nullptr)
  {
    if (m_ComputeMargin)
      (*quality) = m_RFModel->predict_margin(sample);
    else
      (*quality) = m_RFModel->predict_confidence(sample);
  }

  if (proba != nullptr && !this->m_ProbaIndex)
    itkExceptionMacro("Probability per class not available for this classifier !");

  return target[0];
}

template <class TInputValue, class TOutputValue>
void RandomForestsMachineLearningModel<TInputValue, TOutputValue>::Save(const std::string& filename, const std::string& name)
{
  cv::FileStorage fs(filename, cv::FileStorage::WRITE);
  fs << (name.empty() ? m_RFModel->getDefaultName() : cv::String(name)) << "{";
  m_RFModel->write(fs);
  fs << "}";
  fs.release();
}

template <class TInputValue, class TOutputValue>
void RandomForestsMachineLearningModel<TInputValue, TOutputValue>::Load(const std::string& filename, const std::string& name)
{
  cv::FileStorage fs(filename, cv::FileStorage::READ);
  m_RFModel->read(name.empty() ? fs.getFirstTopLevelNode() : fs[name]);
}

template <class TInputValue, class TOutputValue>
bool RandomForestsMachineLearningModel<TInputValue, TOutputValue>::CanReadFile(const std::string& file)
{
  std::ifstream ifs;
  ifs.open(file);

  if (!ifs)
  {
    std::cerr << "Could not read file " << file << std::endl;
    return false;
  }


  while (!ifs.eof())
  {
    std::string line;
    std::getline(ifs, line);

    // if (line.find(m_RFModel->getName()) != std::string::npos)
    if (line.find(CV_TYPE_NAME_ML_RTREES) != std::string::npos || line.find(m_RFModel->getDefaultName()) != std::string::npos)
    {
      return true;
    }
  }
  ifs.close();
  return false;
}

template <class TInputValue, class TOutputValue>
bool RandomForestsMachineLearningModel<TInputValue, TOutputValue>::CanWriteFile(const std::string& itkNotUsed(file))
{
  return false;
}

template <class TInputValue, class TOutputValue>
typename RandomForestsMachineLearningModel<TInputValue, TOutputValue>::VariableImportanceMatrixType
RandomForestsMachineLearningModel<TInputValue, TOutputValue>::GetVariableImportance()
{
  cv::Mat                      cvMat = m_RFModel->getVarImportance();
  VariableImportanceMatrixType itkMat(cvMat.rows, cvMat.cols);
  for (int i = 0; i < cvMat.rows; i++)
  {
    for (int j = 0; j < cvMat.cols; j++)
    {
      itkMat(i, j) = cvMat.at<float>(i, j);
    }
  }
  return itkMat;
}


template <class TInputValue, class TOutputValue>
void RandomForestsMachineLearningModel<TInputValue, TOutputValue>::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  // Call superclass implementation
  Superclass::PrintSelf(os, indent);
}

} // end namespace otb

#endif