File: otbSVMMachineLearningModel.h

package info (click to toggle)
otb 7.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,005,476 kB
  • sloc: cpp: 270,143; xml: 128,722; ansic: 4,367; sh: 1,768; python: 1,084; perl: 92; makefile: 72
file content (174 lines) | stat: -rw-r--r-- 5,360 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
/*
 * Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbSVMMachineLearningModel_h
#define otbSVMMachineLearningModel_h

#include "otbRequiresOpenCVCheck.h"
#include "itkLightObject.h"
#include "itkFixedArray.h"
#include "otbMachineLearningModel.h"

#include "otbOpenCVUtils.h"

namespace otb
{
/**
* \brief OpenCV implementation of SVM algorithm.
*
* This machine learning model uses the OpenCV implementation of the
* SVM algorithm. Since this implementation is buggy in the linear
* case, we recommend users to use the LibSVM implementation instead,
* through the otb::LibSVMMachineLearningModel.
*/
template <class TInputValue, class TTargetValue>
class ITK_EXPORT SVMMachineLearningModel : public MachineLearningModel<TInputValue, TTargetValue>
{
public:
  /** Standard class typedefs. */
  typedef SVMMachineLearningModel Self;
  typedef MachineLearningModel<TInputValue, TTargetValue> Superclass;
  typedef itk::SmartPointer<Self>       Pointer;
  typedef itk::SmartPointer<const Self> ConstPointer;

  typedef typename Superclass::InputValueType       InputValueType;
  typedef typename Superclass::InputSampleType      InputSampleType;
  typedef typename Superclass::InputListSampleType  InputListSampleType;
  typedef typename Superclass::TargetValueType      TargetValueType;
  typedef typename Superclass::TargetSampleType     TargetSampleType;
  typedef typename Superclass::TargetListSampleType TargetListSampleType;
  typedef typename Superclass::ConfidenceValueType  ConfidenceValueType;
  typedef typename Superclass::ProbaSampleType      ProbaSampleType;
  /** Run-time type information (and related methods). */
  itkNewMacro(Self);
  itkTypeMacro(SVMMachineLearningModel, MachineLearningModel);

  /** Train the machine learning model */
  void Train() override;

  /** Save the model to file */
  void Save(const std::string& filename, const std::string& name = "") override;

  /** Load the model from file */
  void Load(const std::string& filename, const std::string& name = "") override;

  /**\name Classification model file compatibility tests */
  //@{
  /** Is the input model file readable and compatible with the corresponding classifier ? */
  bool CanReadFile(const std::string&) override;

  /** Is the input model file writable and compatible with the corresponding classifier ? */
  bool CanWriteFile(const std::string&) override;
  //@}

  // Setters/Getters to SVM model
  itkGetMacro(SVMType, int);
  itkSetMacro(SVMType, int);

  itkGetMacro(KernelType, int);
  itkSetMacro(KernelType, int);

  // CV_TERMCRIT_ITER or CV_TERMCRIT_EPS
  itkGetMacro(TermCriteriaType, int);
  itkSetMacro(TermCriteriaType, int);

  itkGetMacro(MaxIter, int);
  itkSetMacro(MaxIter, int);

  itkGetMacro(Epsilon, double);
  itkSetMacro(Epsilon, double);

  // for poly
  itkGetMacro(Degree, double);
  itkSetMacro(Degree, double);
  itkGetMacro(OutputDegree, double);

  // for poly/rbf/sigmoid
  itkGetMacro(Gamma, double);
  itkSetMacro(Gamma, double);
  itkGetMacro(OutputGamma, double);

  // for poly/sigmoid
  itkGetMacro(Coef0, double);
  itkSetMacro(Coef0, double);
  itkGetMacro(OutputCoef0, double);

  // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR
  itkGetMacro(C, double);
  itkSetMacro(C, double);
  itkGetMacro(OutputC, double);

  // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR
  itkGetMacro(Nu, double);
  itkSetMacro(Nu, double);
  itkGetMacro(OutputNu, double);

  // for CV_SVM_EPS_SVR
  itkGetMacro(P, double);
  itkSetMacro(P, double);
  itkGetMacro(OutputP, double);

  itkGetMacro(ParameterOptimization, bool);
  itkSetMacro(ParameterOptimization, bool);

protected:
  /** Constructor */
  SVMMachineLearningModel();

  /** Destructor */
  ~SVMMachineLearningModel() override = default;

  /** Predict values using the model */
  TargetSampleType DoPredict(const InputSampleType& input, ConfidenceValueType* quality = nullptr, ProbaSampleType* proba = nullptr) const override;

  /** PrintSelf method */
  void PrintSelf(std::ostream& os, itk::Indent indent) const override;

private:
  SVMMachineLearningModel(const Self&) = delete;
  void operator=(const Self&) = delete;
  cv::Ptr<cv::ml::SVM> m_SVMModel;
  int    m_SVMType;
  int    m_KernelType;
  double m_Degree;
  double m_Gamma;
  double m_Coef0;
  double m_C;
  double m_Nu;
  double m_P;
  int    m_TermCriteriaType;
  int    m_MaxIter;
  double m_Epsilon;
  bool   m_ParameterOptimization;
  // Output parameters
  double m_OutputDegree;
  double m_OutputGamma;
  double m_OutputCoef0;
  double m_OutputC;
  double m_OutputNu;
  double m_OutputP;
};
} // end namespace otb

#ifndef OTB_MANUAL_INSTANTIATION
#include "otbSVMMachineLearningModel.hxx"
#endif

#endif