File: otbSVMMachineLearningModel.hxx

package info (click to toggle)
otb 7.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,005,476 kB
  • sloc: cpp: 270,143; xml: 128,722; ansic: 4,367; sh: 1,768; python: 1,084; perl: 92; makefile: 72
file content (195 lines) | stat: -rw-r--r-- 6,184 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
/*
 * Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbSVMMachineLearningModel_hxx
#define otbSVMMachineLearningModel_hxx

#include <fstream>
#include "itkMacro.h"
#include "otbSVMMachineLearningModel.h"
#include "otbOpenCVUtils.h"

namespace otb
{

template <class TInputValue, class TOutputValue>
SVMMachineLearningModel<TInputValue, TOutputValue>::SVMMachineLearningModel()
  :
    m_SVMModel(cv::ml::SVM::create()),
    m_SVMType(CvSVM::C_SVC),
    m_KernelType(CvSVM::RBF),
    m_Degree(0),
    m_Gamma(1),
    m_Coef0(0),
    m_C(1),
    m_Nu(0),
    m_P(0),
    m_TermCriteriaType(CV_TERMCRIT_ITER),
    m_MaxIter(1000),
    m_Epsilon(FLT_EPSILON),
    m_ParameterOptimization(false),
    m_OutputDegree(0),
    m_OutputGamma(1),
    m_OutputCoef0(0),
    m_OutputC(1),
    m_OutputNu(0),
    m_OutputP(0)
{
  this->m_ConfidenceIndex       = true;
  this->m_IsRegressionSupported = true;
}

/** Train the machine learning model */
template <class TInputValue, class TOutputValue>
void SVMMachineLearningModel<TInputValue, TOutputValue>::Train()
{
  // Check that the SVM type is compatible with the chosen mode (classif/regression)
  if (bool(m_SVMType == CvSVM::NU_SVR || m_SVMType == CvSVM::EPS_SVR) != this->m_RegressionMode)
  {
    itkGenericExceptionMacro(
        "SVM type incompatible with chosen mode (classification or regression."
        "SVM types for classification are C_SVC, NU_SVC, ONE_CLASS. "
        "SVM types for regression are NU_SVR, EPS_SVR");
  }

  // convert listsample to opencv matrix
  cv::Mat samples;
  otb::ListSampleToMat<InputListSampleType>(this->GetInputListSample(), samples);

  cv::Mat labels;
  otb::ListSampleToMat<TargetListSampleType>(this->GetTargetListSample(), labels);

  cv::Mat var_type = cv::Mat(this->GetInputListSample()->GetMeasurementVectorSize() + 1, 1, CV_8U);
  var_type.setTo(cv::Scalar(CV_VAR_NUMERICAL)); // all inputs are numerical

  if (!this->m_RegressionMode) // Classification
    var_type.at<uchar>(this->GetInputListSample()->GetMeasurementVectorSize(), 0) = CV_VAR_CATEGORICAL;

  m_SVMModel->setType(m_SVMType);
  m_SVMModel->setKernel(m_KernelType);
  m_SVMModel->setDegree(m_Degree);
  m_SVMModel->setGamma(m_Gamma);
  m_SVMModel->setCoef0(m_Coef0);
  m_SVMModel->setC(m_C);
  m_SVMModel->setNu(m_Nu);
  m_SVMModel->setP(m_P);
  m_SVMModel->setTermCriteria(cv::TermCriteria(m_TermCriteriaType, m_MaxIter, m_Epsilon));

  if (!m_ParameterOptimization)
  {
    m_SVMModel->train(cv::ml::TrainData::create(samples, cv::ml::ROW_SAMPLE, labels, cv::noArray(), cv::noArray(), cv::noArray(), var_type));
  }
  else
  {
    m_SVMModel->trainAuto(cv::ml::TrainData::create(samples, cv::ml::ROW_SAMPLE, labels, cv::noArray(), cv::noArray(), cv::noArray(), var_type));
  }

  m_OutputDegree = m_SVMModel->getDegree();
  m_OutputGamma  = m_SVMModel->getGamma();
  m_OutputCoef0  = m_SVMModel->getCoef0();
  m_OutputC      = m_SVMModel->getC();
  m_OutputNu     = m_SVMModel->getNu();
  m_OutputP      = m_SVMModel->getP();
}

template <class TInputValue, class TOutputValue>
typename SVMMachineLearningModel<TInputValue, TOutputValue>::TargetSampleType
SVMMachineLearningModel<TInputValue, TOutputValue>::DoPredict(const InputSampleType& input, ConfidenceValueType* quality, ProbaSampleType* proba) const
{
  TargetSampleType target;
  // convert listsample to Mat
  cv::Mat sample;

  otb::SampleToMat<InputSampleType>(input, sample);

  double result = m_SVMModel->predict(sample);

  target[0] = static_cast<TOutputValue>(result);

  if (quality != nullptr)
  {
    (*quality) = m_SVMModel->predict(sample, cv::noArray(), cv::ml::StatModel::RAW_OUTPUT);
  }
  if (proba != nullptr && !this->m_ProbaIndex)
    itkExceptionMacro("Probability per class not available for this classifier !");

  return target;
}

template <class TInputValue, class TOutputValue>
void SVMMachineLearningModel<TInputValue, TOutputValue>::Save(const std::string& filename, const std::string& name)
{
  cv::FileStorage fs(filename, cv::FileStorage::WRITE);
  fs << (name.empty() ? m_SVMModel->getDefaultName() : cv::String(name)) << "{";
  m_SVMModel->write(fs);
  fs << "}";
  fs.release();
}

template <class TInputValue, class TOutputValue>
void SVMMachineLearningModel<TInputValue, TOutputValue>::Load(const std::string& filename, const std::string& name)
{
  cv::FileStorage fs(filename, cv::FileStorage::READ);
  m_SVMModel->read(name.empty() ? fs.getFirstTopLevelNode() : fs[name]);
}

template <class TInputValue, class TOutputValue>
bool SVMMachineLearningModel<TInputValue, TOutputValue>::CanReadFile(const std::string& file)
{
  std::ifstream ifs;
  ifs.open(file);

  if (!ifs)
  {
    std::cerr << "Could not read file " << file << std::endl;
    return false;
  }

  while (!ifs.eof())
  {
    std::string line;
    std::getline(ifs, line);

    // if (line.find(m_SVMModel->getName()) != std::string::npos)
    if (line.find(CV_TYPE_NAME_ML_SVM) != std::string::npos || line.find(m_SVMModel->getDefaultName()) != std::string::npos)
    {
      return true;
    }
  }
  ifs.close();
  return false;
}

template <class TInputValue, class TOutputValue>
bool SVMMachineLearningModel<TInputValue, TOutputValue>::CanWriteFile(const std::string& itkNotUsed(file))
{
  return false;
}

template <class TInputValue, class TOutputValue>
void SVMMachineLearningModel<TInputValue, TOutputValue>::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  // Call superclass implementation
  Superclass::PrintSelf(os, indent);
}

} // end namespace otb

#endif