File: otbTrainMachineLearningUnsupervisedModel.cxx

package info (click to toggle)
otb 7.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,005,476 kB
  • sloc: cpp: 270,143; xml: 128,722; ansic: 4,367; sh: 1,768; python: 1,084; perl: 92; makefile: 72
file content (186 lines) | stat: -rw-r--r-- 6,300 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/*
 * Copyright (C) 2005-2020 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <iostream>

#include <otbConfigure.h>
#include <otbMachineLearningModel.h>

typedef otb::MachineLearningModel<float, short> MachineLearningModelType;
typedef MachineLearningModelType::InputValueType       InputValueType;
typedef MachineLearningModelType::InputSampleType      InputSampleType;
typedef MachineLearningModelType::InputListSampleType  InputListSampleType;
typedef MachineLearningModelType::TargetValueType      TargetValueType;
typedef MachineLearningModelType::TargetSampleType     TargetSampleType;
typedef MachineLearningModelType::TargetListSampleType TargetListSampleType;

typedef otb::MachineLearningModel<float, float> MachineLearningModelRegressionType;
typedef MachineLearningModelRegressionType::InputValueType       InputValueRegressionType;
typedef MachineLearningModelRegressionType::InputSampleType      InputSampleRegressionType;
typedef MachineLearningModelRegressionType::InputListSampleType  InputListSampleRegressionType;
typedef MachineLearningModelRegressionType::TargetValueType      TargetValueRegressionType;
typedef MachineLearningModelRegressionType::TargetSampleType     TargetSampleRegressionType;
typedef MachineLearningModelRegressionType::TargetListSampleType TargetListSampleRegressionType;


#ifdef OTB_USE_SHARK
#include "otbSharkKMeansMachineLearningModel.h"
#include "otb_boost_string_header.h"
#include <chrono>

bool SharkReadDataFile(const std::string& infname, InputListSampleType* samples, TargetListSampleType* labels)
{
  std::ifstream ifs(infname);

  if (!ifs)
  {
    std::cout << "Could not read file " << infname << std::endl;
    return false;
  }

  unsigned int nbfeatures = 0;

  std::string line;
  while (std::getline(ifs, line))
  {
    boost::algorithm::trim(line);

    if (nbfeatures == 0)
    {
      nbfeatures = std::count(line.begin(), line.end(), ' ');
    }

    if (line.size() > 1)
    {
      InputSampleType sample(nbfeatures);
      sample.Fill(0);

      std::string::size_type pos = line.find_first_of(" ", 0);

      // Parse label
      TargetSampleType label;
      label[0] = std::stoi(line.substr(0, pos).c_str());

      bool         endOfLine = false;
      unsigned int id        = 0;

      while (!endOfLine)
      {
        std::string::size_type nextpos = line.find_first_of(" ", pos + 1);

        if (pos == std::string::npos)
        {
          endOfLine = true;
          nextpos   = line.size() - 1;
        }
        else
        {
          std::string            feature      = line.substr(pos, nextpos - pos);
          std::string::size_type semicolonpos = feature.find_first_of(":");
          id                                  = std::stoi(feature.substr(0, semicolonpos).c_str());
          sample[id - 1]                      = atof(feature.substr(semicolonpos + 1, feature.size() - semicolonpos).c_str());
          pos                                 = nextpos;
        }
      }
      samples->SetMeasurementVectorSize(itk::NumericTraits<InputSampleType>::GetLength(sample));
      samples->PushBack(sample);
      labels->PushBack(label);
    }
  }

  // std::cout<<"Retrieved "<<samples->Size()<<" samples"<<std::endl;
  ifs.close();
  return true;
}


int otbSharkKMeansMachineLearningModelTrain(int argc, char* argv[])
{
  if (argc != 3)
  {
    std::cout << "Wrong number of arguments " << std::endl;
    std::cout << "Usage : sample file, output file " << std::endl;
    return EXIT_FAILURE;
  }

  typedef otb::SharkKMeansMachineLearningModel<InputValueType, TargetValueType> KMeansType;
  InputListSampleType::Pointer  samples = InputListSampleType::New();
  TargetListSampleType::Pointer labels  = TargetListSampleType::New();

  if (!SharkReadDataFile(argv[1], samples, labels))
  {
    std::cout << "Failed to read samples file " << argv[1] << std::endl;
    return EXIT_FAILURE;
  }

  KMeansType::Pointer classifier = KMeansType::New();
  classifier->SetInputListSample(samples);
  classifier->SetTargetListSample(labels);
  classifier->SetRegressionMode(false);
  classifier->SetK(3);
  classifier->SetMaximumNumberOfIterations(0);
  std::cout << "Train\n";
  classifier->Train();
  std::cout << "Save\n";
  classifier->Save(argv[2]);

  return EXIT_SUCCESS;
}


int otbSharkKMeansMachineLearningModelPredict(int argc, char* argv[])
{
  if (argc != 3)
  {
    std::cout << "Wrong number of arguments " << std::endl;
    std::cout << "Usage : sample file, input model file " << std::endl;
    return EXIT_FAILURE;
  }

  typedef otb::SharkKMeansMachineLearningModel<InputValueType, TargetValueType> KMeansType;
  InputListSampleType::Pointer  samples = InputListSampleType::New();
  TargetListSampleType::Pointer labels  = TargetListSampleType::New();

  if (!SharkReadDataFile(argv[1], samples, labels))
  {
    std::cout << "Failed to read samples file " << argv[1] << std::endl;
    return EXIT_FAILURE;
  }

  KMeansType::Pointer classifier = KMeansType::New();
  std::cout << "Load\n";
  if (!classifier->CanReadFile(argv[2]))
  {
    std::cerr << "Unable to read model file : " << argv[2] << std::endl;
    return EXIT_FAILURE;
  }
  classifier->Load(argv[2]);
  auto start = std::chrono::system_clock::now();
  classifier->SetInputListSample(samples);
  classifier->SetTargetListSample(labels);
  std::cout << "Predict loaded\n";
  classifier->PredictBatch(samples, NULL);
  using TimeT   = std::chrono::milliseconds;
  auto duration = std::chrono::duration_cast<TimeT>(std::chrono::system_clock::now() - start);
  auto elapsed  = duration.count();
  std::cout << "PredictAll took " << elapsed << " ms\n";

  return EXIT_SUCCESS;
}
#endif