1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
/*
* Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Example usage:
./BandMathXImageFilterExample Input/qb_RoadExtract.tif Output/qb_BandMath-res1.tif Output/qb_BandMath-res2.tif Output/context.txt
*/
// This filter is based on the mathematical parser library muParserX.
// The built in functions and operators list is available at:
// \url{http://articles.beltoforion.de/article.php?a=muparserx}.
//
// In order to use this filter, at least one input image is to be
// set. An associated variable name can be specified or not by using
// the corresponding SetNthInput method. For the jth (j=1..T) input image, if
// no associated variable name has been specified, a default variable
// name is given by concatenating the prefix "im" with the
// corresponding input index plus one (for instance, im1 is related to the first input).
// If the jth input image is multidimensional, then the variable imj represents a vector whose components are related to its bands.
// In order to access the kth band, the variable observes the following pattern : imjbk.
#include "itkMacro.h"
#include <iostream>
#include "otbVectorImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
// We start by including the needed header files.
#include "otbVectorImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbBandMathXImageFilter.h"
int main(int argc, char* argv[])
{
if (argc != 5)
{
std::cerr << "Usage: " << argv[0] << " inputImageFile ";
std::cerr << " outputImageFile ";
std::cerr << " outputImageFile2";
std::cerr << " context.txt" << std::endl;
return EXIT_FAILURE;
}
// Then, we set the classical \code{typedef}s needed for reading and
// writing the images. The \doxygen{otb}{BandMathXImageFilter} class
// works with \doxygen{otb}{VectorImage}.
using PixelType = double;
using ImageType = otb::VectorImage<PixelType, 2>;
using ReaderType = otb::ImageFileReader<ImageType>;
using WriterType = otb::ImageFileWriter<ImageType>;
// We can now define the type for the filter:
using FilterType = otb::BandMathXImageFilter<ImageType>;
// We instantiate the filter, the reader, and the writer:
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
FilterType::Pointer filter = FilterType::New();
// The reader and the writer are parametrized with usual settings:
reader->SetFileName(argv[1]);
writer->SetFileName(argv[2]);
// The aim of this example is to compute a simple high-pass filter.
// For that purpose, we are going to perform the difference between the original signal
// and its averaged version. The definition of the expression that follows is only suitable for a 4-band image.
// So first, we must check this requirement:
reader->UpdateOutputInformation();
if (reader->GetOutput()->GetNumberOfComponentsPerPixel() != 4)
itkGenericExceptionMacro(<< "Input image must have 4 bands." << std::endl);
// Now, we can define the expression. The variable im1 represents a pixel (made of 4 components) of the input image.
// The variable im1b1N5x5 represents a neighborhood of size 5x5 around this pixel (and so on for each band).
// The last element we need is the operator 'mean'. By setting its inputs with four neigborhoods, we tell this operator to process the four related bands.
// As output, it will produce a vector of four components; this is consistent with the fact that we wish to perform a difference with im1.
//
// Thus, the expression is as follows:
filter->SetExpression("im1-mean(im1b1N5x5,im1b2N5x5,im1b3N5x5,im1b4N5x5)");
// Note that the importance of the averaging is driven by the names of the neighborhood variables.
// Last thing we have to do, is to set the pipeline:
filter->SetNthInput(0, reader->GetOutput());
writer->SetInput(filter->GetOutput());
writer->Update();
// Figure~\ref{fig:BandMathXImageFilter} shows the result of our high-pass filter.
// \begin{figure}
// \center
// \includegraphics[width=0.45\textwidth]{qb_ExtractRoad_pretty.eps}
// \includegraphics[width=0.45\textwidth]{qb_BandMath-res1.eps}
// \itkcaption[Band Math X]{From left to right:
// Original image, high-pass filter output.}
// \label{fig:BandMathXImageFilter}
// \end{figure}
// Now let's see a little bit more complex example.
// The aim now is to give the central pixel a higher weight. Moreover :
// - we wish to use smaller neighborhoods
// - we wish to drop the 4th band
// - we wish to add a given number to each band.
//
// First, we instantiate new filters to later make a proper pipeline:
ReaderType::Pointer reader2 = ReaderType::New();
WriterType::Pointer writer2 = WriterType::New();
FilterType::Pointer filter2 = FilterType::New();
reader2->SetFileName(argv[1]);
writer2->SetFileName(argv[3]);
// We define a new kernel (rows are separated by semi-colons, whereas their elements are separated by commas):
filter2->SetMatrix("kernel", "{ 0.1 , 0.1 , 0.1; 0.1 , 0.2 , 0.1; 0.1 , 0.1 , 0.1 }");
// We then define a new constant:
filter2->SetConstant("cst", 1.0);
// We now set the expression (note the use of 'dotpr' operator, as well as the 'bands' operator which is used as a band selector):
filter2->SetExpression("bands(im1,{1,2,3})-dotpr(kernel,im1b1N3x3,im1b2N3x3,im1b3N3x3) + {cst,cst,cst}");
// It is possible to export these definitions to a txt file (they will be reusable later thanks to the method ImportContext):
filter2->ExportContext(argv[4]);
// And finally, we set the pipeline:
filter2->SetNthInput(0, reader2->GetOutput());
writer2->SetInput(filter2->GetOutput());
writer2->Update();
// Figure~\ref{fig:BandMathXImageFilter2} shows the result of the second filter.
// \begin{figure}
// \center
// \includegraphics[width=0.45\textwidth]{qb_ExtractRoad_pretty.eps}
// \includegraphics[width=0.45\textwidth]{qb_BandMath-res2.eps}
// \itkcaption[Band Math X]{From left to right:
// Original image, second filter output.}
// \label{fig:BandMathXImageFilter2}
// \end{figure}
// Finally, it is strongly recommended to take a look at the cookbook, where additional information and examples can be found
// (http://www.orfeo-toolbox.org/packages/OTBCookBook.pdf).
return EXIT_SUCCESS;
}
|