File: DiffChDet.cxx

package info (click to toggle)
otb 8.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,030,436 kB
  • sloc: xml: 231,007; cpp: 224,490; ansic: 4,592; sh: 1,790; python: 1,131; perl: 92; makefile: 72
file content (121 lines) | stat: -rw-r--r-- 4,817 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
/*
 * Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


/* Example usage:
./DiffChDet Input/SpotBefore.png Input/SpotAfter.png Output/DiffChDet.tif 3
*/


#include "otbMeanDifferenceImageFilter.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbImage.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkAbsImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "otbCommandProgressUpdate.h"

int main(int argc, char* argv[])
{

  if (argc < 5)
  {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] << " inputImageFile1 inputImageFile2  outputImageFile radius" << std::endl;
    return -1;
  }

  // Define the dimension of the images
  const unsigned int Dimension = 2;

  // We start by declaring the types for the two input images, the
  // change image and the image to be stored in a file for visualization.
  using InternalPixelType = float;
  using OutputPixelType   = unsigned char;
  using InputImageType1   = otb::Image<InternalPixelType, Dimension>;
  using InputImageType2   = otb::Image<InternalPixelType, Dimension>;
  using ChangeImageType   = otb::Image<InternalPixelType, Dimension>;
  using OutputImageType   = otb::Image<OutputPixelType, Dimension>;


  // We can now declare the types for the readers and the writer.
  using ReaderType1 = otb::ImageFileReader<InputImageType1>;
  using ReaderType2 = otb::ImageFileReader<InputImageType2>;
  using WriterType  = otb::ImageFileWriter<OutputImageType>;

  // The change detector will give positive and negative values
  // depending on the sign of the difference. We are usually
  // interested only in the absolute value of the difference. For
  // this purpose, we will use the \doxygen{itk}{AbsImageFilter}. Also, before
  // saving the image to a file in, for instance, PNG format, we will
  // rescale the results of the change detection in order to use the full range
  // of values of the output pixel type.
  using AbsType      = itk::AbsImageFilter<ChangeImageType, ChangeImageType>;
  using RescalerType = itk::RescaleIntensityImageFilter<ChangeImageType, OutputImageType>;

  // The MeanDifferenceImageFilter is templated over
  // the types of the two input images and the type of the generated change
  // image.
  using FilterType = otb::MeanDifferenceImageFilter<InputImageType1, InputImageType2, ChangeImageType>;

  // The different elements of the pipeline can now be instantiated.
  ReaderType1::Pointer  reader1   = ReaderType1::New();
  ReaderType2::Pointer  reader2   = ReaderType2::New();
  WriterType::Pointer   writer    = WriterType::New();
  FilterType::Pointer   filter    = FilterType::New();
  AbsType::Pointer      absFilter = AbsType::New();
  RescalerType::Pointer rescaler  = RescalerType::New();

  const char* inputFilename1 = argv[1];
  const char* inputFilename2 = argv[2];
  const char* outputFilename = argv[3];

  // We set the parameters of the different elements of the pipeline.
  reader1->SetFileName(inputFilename1);
  reader2->SetFileName(inputFilename2);
  writer->SetFileName(outputFilename);
  rescaler->SetOutputMinimum(itk::NumericTraits<OutputPixelType>::min());
  rescaler->SetOutputMaximum(itk::NumericTraits<OutputPixelType>::max());

  // The only parameter for this change detector is the radius of
  // the window used for computing the mean of the intensities.

  filter->SetRadius(atoi(argv[4]));

  // We build the pipeline by plugging all the elements together.
  filter->SetInput1(reader1->GetOutput());
  filter->SetInput2(reader2->GetOutput());
  absFilter->SetInput(filter->GetOutput());
  rescaler->SetInput(absFilter->GetOutput());
  writer->SetInput(rescaler->GetOutput());

  // Since the processing time of large images can be long, it is
  // interesting to monitor the evolution of the computation. In
  // order to do so, the change detectors can use the
  // command/observer design pattern. This is easily done by
  // attaching an observer to the filter.
  using CommandType = otb::CommandProgressUpdate<FilterType>;

  CommandType::Pointer observer = CommandType::New();
  filter->AddObserver(itk::ProgressEvent(), observer);

  writer->Update();
}