1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
/*
* Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "otbVectorImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbPrintableImageFilter.h"
/* Example usage:
./PCAExample Input/wv2_cannes_8bands.tif \
Output/PCAOutput.tif \
Output/InversePCAOutput.tif \
Output/input-pretty.png \
Output/output-pretty.png \
Output/invoutput-pretty.png \
8
*/
// This example illustrates the use of the
// \doxygen{otb}{PCAImageFilter}.
// This filter computes a Principal Component Analysis using an
// efficient method based on the inner product in order to compute the
// covariance matrix.
//
// The first step required to use this filter is to include its header file.
#include "otbPCAImageFilter.h"
int main(int itkNotUsed(argc), char* argv[])
{
using PixelType = double;
const unsigned int Dimension = 2;
const char* inputFileName = argv[1];
const char* outputFilename = argv[2];
const char* outputInverseFilename = argv[3];
const unsigned int numberOfPrincipalComponentsRequired(atoi(argv[7]));
const char* inpretty = argv[4];
const char* outpretty = argv[5];
const char* invoutpretty = argv[6];
// We start by defining the types for the images and the reader and
// the writer. We choose to work with a \doxygen{otb}{VectorImage},
// since we will produce a multi-channel image (the principal
// components) from a multi-channel input image.
using ImageType = otb::VectorImage<PixelType, Dimension>;
using ReaderType = otb::ImageFileReader<ImageType>;
using WriterType = otb::ImageFileWriter<ImageType>;
// We instantiate now the image reader and we set the image file name.
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(inputFileName);
// We define the type for the filter. It is templated over the input
// and the output image types and also the transformation direction. The
// internal structure of this filter is a filter-to-filter like structure.
// We can now the instantiate the filter.
using PCAFilterType = otb::PCAImageFilter<ImageType, ImageType, otb::Transform::FORWARD>;
PCAFilterType::Pointer pcafilter = PCAFilterType::New();
// The only parameter needed for the PCA is the number of principal
// components required as output. Principal components are linear combination of input components
// (here the input image bands),
// which are selected using Singular Value Decomposition eigen vectors sorted by eigen value.
// We can choose to get less Principal Components than
// the number of input bands.
pcafilter->SetNumberOfPrincipalComponentsRequired(numberOfPrincipalComponentsRequired);
// We now instantiate the writer and set the file name for the
// output image.
WriterType::Pointer writer = WriterType::New();
writer->SetFileName(outputFilename);
// We finally plug the pipeline and trigger the PCA computation with
// the method \code{Update()} of the writer.
pcafilter->SetInput(reader->GetOutput());
writer->SetInput(pcafilter->GetOutput());
writer->Update();
// \doxygen{otb}{PCAImageFilter} allows also to compute inverse
// transformation from PCA coefficients. In reverse mode, the
// covariance matrix or the transformation matrix
// (which may not be square) has to be given.
using InvPCAFilterType = otb::PCAImageFilter<ImageType, ImageType, otb::Transform::INVERSE>;
InvPCAFilterType::Pointer invFilter = InvPCAFilterType::New();
invFilter->SetInput(pcafilter->GetOutput());
invFilter->SetTransformationMatrix(pcafilter->GetTransformationMatrix());
WriterType::Pointer invWriter = WriterType::New();
invWriter->SetFileName(outputInverseFilename);
invWriter->SetInput(invFilter->GetOutput());
invWriter->Update();
// Figure~\ref{fig:PCA_FILTER} shows the result of applying forward
// and reverse PCA transformation to a 8 bands Worldview2 image.
// \begin{figure}
// \center
// \includegraphics[width=0.32\textwidth]{input-pretty.eps}
// \includegraphics[width=0.32\textwidth]{output-pretty.eps}
// \includegraphics[width=0.32\textwidth]{invoutput-pretty.eps}
// \itkcaption[PCA Filter (forward trasnformation)]{Result of applying the
// \doxygen{otb}{PCAImageFilter} to an image. From left
// to right:
// original image, color composition with first three principal
// components and output of the
// inverse mode (the input RGB image).}
// \label{fig:PCA_FILTER}
// \end{figure}
// This is for rendering in software guide
using PrintFilterType = otb::PrintableImageFilter<ImageType, ImageType>;
using VisuImageType = PrintFilterType::OutputImageType;
using VisuWriterType = otb::ImageFileWriter<VisuImageType>;
PrintFilterType::Pointer inputPrintFilter = PrintFilterType::New();
PrintFilterType::Pointer outputPrintFilter = PrintFilterType::New();
PrintFilterType::Pointer invertOutputPrintFilter = PrintFilterType::New();
VisuWriterType::Pointer inputVisuWriter = VisuWriterType::New();
VisuWriterType::Pointer outputVisuWriter = VisuWriterType::New();
VisuWriterType::Pointer invertOutputVisuWriter = VisuWriterType::New();
inputPrintFilter->SetInput(reader->GetOutput());
inputPrintFilter->SetChannel(5);
inputPrintFilter->SetChannel(3);
inputPrintFilter->SetChannel(2);
outputPrintFilter->SetInput(pcafilter->GetOutput());
outputPrintFilter->SetChannel(1);
outputPrintFilter->SetChannel(2);
outputPrintFilter->SetChannel(3);
invertOutputPrintFilter->SetInput(invFilter->GetOutput());
invertOutputPrintFilter->SetChannel(5);
invertOutputPrintFilter->SetChannel(3);
invertOutputPrintFilter->SetChannel(2);
inputVisuWriter->SetInput(inputPrintFilter->GetOutput());
outputVisuWriter->SetInput(outputPrintFilter->GetOutput());
invertOutputVisuWriter->SetInput(invertOutputPrintFilter->GetOutput());
inputVisuWriter->SetFileName(inpretty);
outputVisuWriter->SetFileName(outpretty);
invertOutputVisuWriter->SetFileName(invoutpretty);
inputVisuWriter->Update();
outputVisuWriter->Update();
invertOutputVisuWriter->Update();
return EXIT_SUCCESS;
}
|