1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
/*
* Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Example usage:
./FineRegistrationImageFilterExample Input/StereoFixed.png \
Input/StereoMoving.png \
Output/fcDisplacementFieldOutput-horizontal.png \
Output/fcDisplacementFieldOutput-vertical.png \
Output/fcCorrelFieldOutput.png \
Output/fcDResampledOutput2.png \
1.0 \
5 \
3 \
0.1
*/
/* Example usage:
./FineRegistrationImageFilterExample Input/StereoFixed.png \
Input/StereoMoving.png \
Output/fcMRSDDisplacementFieldOutput-horizontal.png \
Output/fcMRSDDisplacementFieldOutput-vertical.png \
Output/fcMRSDCorrelFieldOutput.png \
Output/fcMRSDDResampledOutput2.png \
1.0 \
5 \
3 \
0.1 \
mrsd
*/
// This example demonstrates the use of the \doxygen{otb}{FineRegistrationImageFilter}. This filter performs deformation estimation
// using the classical extrema of image-to-image metric look-up in a search window.
//
// The first step toward the use of these filters is to include the proper header files.
#include "otbImageFileWriter.h"
#include "otbImageFileReader.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRecursiveGaussianImageFilter.h"
#include "itkWarpImageFilter.h"
#include "itkMeanReciprocalSquareDifferenceImageToImageMetric.h"
#include "otbFineRegistrationImageFilter.h"
#include "otbImageOfVectorsToMonoChannelExtractROI.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkCastImageFilter.h"
#include <iostream>
int main(int argc, char** argv)
{
if (argc < 11)
{
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedFileName movingFileName fieldOutNameHorizontal fieldOutNameVertical fieldMetric warped ";
std::cerr << "smoothingSigma metricRadius explorationRadius subpixelPrecision";
return EXIT_FAILURE;
}
const unsigned int ImageDimension = 2;
using PixelType = double;
using DisplacementPixelType = itk::Vector<double, ImageDimension>;
using OutputPixelType = unsigned char;
using OutputImageType = otb::Image<OutputPixelType, ImageDimension>;
// Several type of \doxygen{otb}{Image} are required to represent the input image, the metric field,
// and the deformation field.
// Allocate Images
using InputImageType = otb::Image<PixelType, ImageDimension>;
using MetricImageType = otb::Image<PixelType, ImageDimension>;
using DisplacementFieldType = otb::Image<DisplacementPixelType, ImageDimension>;
using InputReaderType = otb::ImageFileReader<InputImageType>;
InputReaderType::Pointer fReader = InputReaderType::New();
fReader->SetFileName(argv[1]);
InputReaderType::Pointer mReader = InputReaderType::New();
mReader->SetFileName(argv[2]);
// To make the metric estimation more robust, the first
// required step is to blur the input images. This is done using the
// \doxygen{itk}{RecursiveGaussianImageFilter}:
// Blur input images
using InputBlurType = itk::RecursiveGaussianImageFilter<InputImageType, InputImageType>;
InputBlurType::Pointer fBlur = InputBlurType::New();
fBlur->SetInput(fReader->GetOutput());
fBlur->SetSigma(atof(argv[7]));
InputBlurType::Pointer mBlur = InputBlurType::New();
mBlur->SetInput(mReader->GetOutput());
mBlur->SetSigma(atof(argv[7]));
// Now, we declare and instantiate the \doxygen{otb}{FineRegistrationImageFilter} which is going to perform the registration:
// Create the filter
using RegistrationFilterType = otb::FineRegistrationImageFilter<InputImageType, MetricImageType, DisplacementFieldType>;
RegistrationFilterType::Pointer registrator = RegistrationFilterType::New();
registrator->SetMovingInput(mBlur->GetOutput());
registrator->SetFixedInput(fBlur->GetOutput());
// Some parameters need to be specified to the filter:
// \begin{itemize}
// \item The area where the search is performed. This area is defined by its radius:
using RadiusType = RegistrationFilterType::SizeType;
RadiusType searchRadius;
searchRadius[0] = atoi(argv[8]);
searchRadius[1] = atoi(argv[8]);
registrator->SetSearchRadius(searchRadius);
std::cout << "Exploration radius " << registrator->GetSearchRadius() << std::endl;
// \item The window used to compute the local metric. This window is also defined by its radius:
RadiusType metricRadius;
metricRadius[0] = atoi(argv[9]);
metricRadius[1] = atoi(argv[9]);
registrator->SetRadius(metricRadius);
std::cout << "Metric radius " << registrator->GetRadius() << std::endl;
// We need to set the sub-pixel accuracy we want to obtain:
registrator->SetConvergenceAccuracy(atof(argv[10]));
// The default matching metric used by the \doxygen{otb}{FineRegistrationImageFilter} is standard correlation.
// However, we may also use any other image-to-image metric provided by ITK. For instance, here is how we
// would use the \doxygen{itk}{MutualInformationImageToImageMetric} (do not forget to include the proper header).
if (argc > 11)
{
using MRSDMetricType = itk::MeanReciprocalSquareDifferenceImageToImageMetric<InputImageType, InputImageType>;
MRSDMetricType::Pointer mrsdMetric = MRSDMetricType::New();
registrator->SetMetric(mrsdMetric);
// The \doxygen{itk}{MutualInformationImageToImageMetric} produces low value for poor matches, therefore, the filter has
// to maximize the metric :
registrator->MinimizeOff();
}
// \end{itemize}
// The execution of the \doxygen{otb}{FineRegistrationImageFilter} will be triggered by
// the \code{Update()} call on the writer at the end of the
// pipeline. Make sure to use a
// \doxygen{otb}{ImageFileWriter} if you want to benefit
// from the streaming features.
using ChannelExtractionFilterType = otb::ImageOfVectorsToMonoChannelExtractROI<DisplacementFieldType, InputImageType>;
ChannelExtractionFilterType::Pointer channelExtractor = ChannelExtractionFilterType::New();
channelExtractor->SetInput(registrator->GetOutputDisplacementField());
channelExtractor->SetChannel(1);
using RescalerType = itk::RescaleIntensityImageFilter<InputImageType, OutputImageType>;
RescalerType::Pointer fieldRescaler = RescalerType::New();
fieldRescaler->SetInput(channelExtractor->GetOutput());
fieldRescaler->SetOutputMaximum(255);
fieldRescaler->SetOutputMinimum(0);
using DFWriterType = otb::ImageFileWriter<OutputImageType>;
DFWriterType::Pointer dfWriter = DFWriterType::New();
dfWriter->SetFileName(argv[3]);
dfWriter->SetInput(fieldRescaler->GetOutput());
dfWriter->Update();
channelExtractor->SetChannel(2);
dfWriter->SetFileName(argv[4]);
dfWriter->Update();
using WarperType = itk::WarpImageFilter<InputImageType, InputImageType, DisplacementFieldType>;
WarperType::Pointer warper = WarperType::New();
InputImageType::PixelType padValue = 4.0;
warper->SetInput(mReader->GetOutput());
warper->SetDisplacementField(registrator->GetOutputDisplacementField());
warper->SetEdgePaddingValue(padValue);
using MetricRescalerType = itk::RescaleIntensityImageFilter<MetricImageType, OutputImageType>;
MetricRescalerType::Pointer metricRescaler = MetricRescalerType::New();
metricRescaler->SetInput(registrator->GetOutput());
metricRescaler->SetOutputMinimum(0);
metricRescaler->SetOutputMaximum(255);
using WriterType = otb::ImageFileWriter<OutputImageType>;
WriterType::Pointer writer1 = WriterType::New();
writer1->SetInput(metricRescaler->GetOutput());
writer1->SetFileName(argv[5]);
writer1->Update();
using CastFilterType = itk::CastImageFilter<InputImageType, OutputImageType>;
CastFilterType::Pointer caster = CastFilterType::New();
caster->SetInput(warper->GetOutput());
WriterType::Pointer writer2 = WriterType::New();
writer2->SetFileName(argv[6]);
writer2->SetInput(caster->GetOutput());
writer2->Update();
// Figure~\ref{fig:FineCorrelationImageFilterOUTPUT} shows the result of
// applying the \doxygen{otb}{FineRegistrationImageFilter}.
//
// \begin{figure}
// \center
// \includegraphics[width=0.2\textwidth]{StereoFixed.eps}
// \includegraphics[width=0.2\textwidth]{StereoMoving.eps}
// \includegraphics[width=0.2\textwidth]{fcCorrelFieldOutput.eps}
// \includegraphics[width=0.2\textwidth]{fcMRSDCorrelFieldOutput.eps}
// \includegraphics[width=0.2\textwidth]{fcDResampledOutput2.eps}
// \includegraphics[width=0.2\textwidth]{fcMRSDDResampledOutput2.eps}
// \includegraphics[width=0.2\textwidth]{fcDisplacementFieldOutput-horizontal.eps}
// \includegraphics[width=0.2\textwidth]{fcMRSDDisplacementFieldOutput-horizontal.eps}
// \itkcaption[Displacement field and resampling from fine registration]{From left
// to right and top to bottom: fixed input image, moving image with a low stereo angle,
// local correlation field, local mean reciprocal square difference field,
// resampled image based on correlation, resampled image based on mean reciprocal square difference,
// estimated epipolar deformation using on correlation,
// estimated epipolar deformation using mean reciprocal square difference.
// }
// \label{fig:FineCorrelationImageFilterOUTPUT}
// \end{figure}
return EXIT_SUCCESS;
}
|