File: FineRegistrationImageFilterExample.cxx

package info (click to toggle)
otb 8.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,030,436 kB
  • sloc: xml: 231,007; cpp: 224,490; ansic: 4,592; sh: 1,790; python: 1,131; perl: 92; makefile: 72
file content (264 lines) | stat: -rw-r--r-- 10,541 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/*
 * Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


/* Example usage:
./FineRegistrationImageFilterExample Input/StereoFixed.png \
                                     Input/StereoMoving.png \
                                     Output/fcDisplacementFieldOutput-horizontal.png \
                                     Output/fcDisplacementFieldOutput-vertical.png \
                                     Output/fcCorrelFieldOutput.png \
                                     Output/fcDResampledOutput2.png \
                                     1.0 \
                                     5 \
                                     3 \
                                     0.1
*/


/* Example usage:
./FineRegistrationImageFilterExample Input/StereoFixed.png \
                                     Input/StereoMoving.png \
                                     Output/fcMRSDDisplacementFieldOutput-horizontal.png \
                                     Output/fcMRSDDisplacementFieldOutput-vertical.png \
                                     Output/fcMRSDCorrelFieldOutput.png \
                                     Output/fcMRSDDResampledOutput2.png \
                                     1.0 \
                                     5 \
                                     3 \
                                     0.1 \
                                     mrsd
*/


// This example demonstrates the use of the \doxygen{otb}{FineRegistrationImageFilter}. This filter performs deformation estimation
// using the classical extrema of image-to-image metric look-up in a search window.
//
// The first step toward the use of these filters is to include the proper header files.

#include "otbImageFileWriter.h"
#include "otbImageFileReader.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRecursiveGaussianImageFilter.h"
#include "itkWarpImageFilter.h"
#include "itkMeanReciprocalSquareDifferenceImageToImageMetric.h"

#include "otbFineRegistrationImageFilter.h"

#include "otbImageOfVectorsToMonoChannelExtractROI.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkCastImageFilter.h"

#include <iostream>

int main(int argc, char** argv)
{

  if (argc < 11)
  {
    std::cerr << "Usage: " << argv[0];
    std::cerr << " fixedFileName movingFileName fieldOutNameHorizontal fieldOutNameVertical fieldMetric warped ";
    std::cerr << "smoothingSigma metricRadius explorationRadius subpixelPrecision";

    return EXIT_FAILURE;
  }

  const unsigned int ImageDimension = 2;

  using PixelType             = double;
  using DisplacementPixelType = itk::Vector<double, ImageDimension>;

  using OutputPixelType = unsigned char;
  using OutputImageType = otb::Image<OutputPixelType, ImageDimension>;

  // Several type of \doxygen{otb}{Image} are required to represent the input image, the metric field,
  // and the deformation field.

  // Allocate Images
  using InputImageType        = otb::Image<PixelType, ImageDimension>;
  using MetricImageType       = otb::Image<PixelType, ImageDimension>;
  using DisplacementFieldType = otb::Image<DisplacementPixelType, ImageDimension>;

  using InputReaderType            = otb::ImageFileReader<InputImageType>;
  InputReaderType::Pointer fReader = InputReaderType::New();
  fReader->SetFileName(argv[1]);

  InputReaderType::Pointer mReader = InputReaderType::New();
  mReader->SetFileName(argv[2]);

  // To make the metric estimation more robust, the first
  // required step is to blur the input images. This is done using the
  // \doxygen{itk}{RecursiveGaussianImageFilter}:

  // Blur input images
  using InputBlurType = itk::RecursiveGaussianImageFilter<InputImageType, InputImageType>;

  InputBlurType::Pointer fBlur = InputBlurType::New();
  fBlur->SetInput(fReader->GetOutput());
  fBlur->SetSigma(atof(argv[7]));

  InputBlurType::Pointer mBlur = InputBlurType::New();
  mBlur->SetInput(mReader->GetOutput());
  mBlur->SetSigma(atof(argv[7]));

  // Now, we declare and instantiate the \doxygen{otb}{FineRegistrationImageFilter} which is going to perform the registration:

  // Create the filter
  using RegistrationFilterType = otb::FineRegistrationImageFilter<InputImageType, MetricImageType, DisplacementFieldType>;

  RegistrationFilterType::Pointer registrator = RegistrationFilterType::New();

  registrator->SetMovingInput(mBlur->GetOutput());
  registrator->SetFixedInput(fBlur->GetOutput());

  // Some parameters need to be specified to the filter:
  // \begin{itemize}
  // \item The area where the search is performed. This area is defined by its radius:

  using RadiusType = RegistrationFilterType::SizeType;

  RadiusType searchRadius;

  searchRadius[0] = atoi(argv[8]);
  searchRadius[1] = atoi(argv[8]);

  registrator->SetSearchRadius(searchRadius);

  std::cout << "Exploration radius " << registrator->GetSearchRadius() << std::endl;

  // \item The window used to compute the local metric. This window is also defined by its radius:

  RadiusType metricRadius;
  metricRadius[0] = atoi(argv[9]);
  metricRadius[1] = atoi(argv[9]);

  registrator->SetRadius(metricRadius);

  std::cout << "Metric radius " << registrator->GetRadius() << std::endl;

  // We need to set the sub-pixel accuracy we want to obtain:
  registrator->SetConvergenceAccuracy(atof(argv[10]));

  // The default matching metric used by the \doxygen{otb}{FineRegistrationImageFilter} is standard correlation.
  // However, we may also use any other image-to-image metric provided by ITK. For instance, here is how we
  // would use the \doxygen{itk}{MutualInformationImageToImageMetric} (do not forget to include the proper header).

  if (argc > 11)
  {
    using MRSDMetricType               = itk::MeanReciprocalSquareDifferenceImageToImageMetric<InputImageType, InputImageType>;
    MRSDMetricType::Pointer mrsdMetric = MRSDMetricType::New();
    registrator->SetMetric(mrsdMetric);

    // The \doxygen{itk}{MutualInformationImageToImageMetric} produces low value for poor matches, therefore, the filter has
    // to maximize the metric :

    registrator->MinimizeOff();
  }


  // \end{itemize}
  // The execution of the \doxygen{otb}{FineRegistrationImageFilter} will be triggered by
  // the \code{Update()} call on the writer at the end of the
  // pipeline. Make sure to use a
  // \doxygen{otb}{ImageFileWriter} if you want to benefit
  // from the streaming features.

  using ChannelExtractionFilterType                     = otb::ImageOfVectorsToMonoChannelExtractROI<DisplacementFieldType, InputImageType>;
  ChannelExtractionFilterType::Pointer channelExtractor = ChannelExtractionFilterType::New();

  channelExtractor->SetInput(registrator->GetOutputDisplacementField());
  channelExtractor->SetChannel(1);

  using RescalerType                  = itk::RescaleIntensityImageFilter<InputImageType, OutputImageType>;
  RescalerType::Pointer fieldRescaler = RescalerType::New();

  fieldRescaler->SetInput(channelExtractor->GetOutput());
  fieldRescaler->SetOutputMaximum(255);
  fieldRescaler->SetOutputMinimum(0);

  using DFWriterType = otb::ImageFileWriter<OutputImageType>;

  DFWriterType::Pointer dfWriter = DFWriterType::New();
  dfWriter->SetFileName(argv[3]);
  dfWriter->SetInput(fieldRescaler->GetOutput());
  dfWriter->Update();

  channelExtractor->SetChannel(2);
  dfWriter->SetFileName(argv[4]);
  dfWriter->Update();

  using WarperType           = itk::WarpImageFilter<InputImageType, InputImageType, DisplacementFieldType>;
  WarperType::Pointer warper = WarperType::New();

  InputImageType::PixelType padValue = 4.0;

  warper->SetInput(mReader->GetOutput());
  warper->SetDisplacementField(registrator->GetOutputDisplacementField());
  warper->SetEdgePaddingValue(padValue);

  using MetricRescalerType = itk::RescaleIntensityImageFilter<MetricImageType, OutputImageType>;

  MetricRescalerType::Pointer metricRescaler = MetricRescalerType::New();
  metricRescaler->SetInput(registrator->GetOutput());
  metricRescaler->SetOutputMinimum(0);
  metricRescaler->SetOutputMaximum(255);

  using WriterType = otb::ImageFileWriter<OutputImageType>;

  WriterType::Pointer writer1 = WriterType::New();
  writer1->SetInput(metricRescaler->GetOutput());
  writer1->SetFileName(argv[5]);
  writer1->Update();

  using CastFilterType           = itk::CastImageFilter<InputImageType, OutputImageType>;
  CastFilterType::Pointer caster = CastFilterType::New();
  caster->SetInput(warper->GetOutput());


  WriterType::Pointer writer2 = WriterType::New();
  writer2->SetFileName(argv[6]);
  writer2->SetInput(caster->GetOutput());
  writer2->Update();

  // Figure~\ref{fig:FineCorrelationImageFilterOUTPUT} shows the result of
  // applying the \doxygen{otb}{FineRegistrationImageFilter}.
  //
  // \begin{figure}
  // \center
  // \includegraphics[width=0.2\textwidth]{StereoFixed.eps}
  // \includegraphics[width=0.2\textwidth]{StereoMoving.eps}
  // \includegraphics[width=0.2\textwidth]{fcCorrelFieldOutput.eps}
  // \includegraphics[width=0.2\textwidth]{fcMRSDCorrelFieldOutput.eps}
  // \includegraphics[width=0.2\textwidth]{fcDResampledOutput2.eps}
  // \includegraphics[width=0.2\textwidth]{fcMRSDDResampledOutput2.eps}
  // \includegraphics[width=0.2\textwidth]{fcDisplacementFieldOutput-horizontal.eps}
  // \includegraphics[width=0.2\textwidth]{fcMRSDDisplacementFieldOutput-horizontal.eps}
  // \itkcaption[Displacement field and resampling from fine registration]{From left
  // to right and top to bottom: fixed input image, moving image with a low stereo angle,
  // local correlation field, local mean reciprocal square difference field,
  // resampled image based on correlation, resampled image based on mean reciprocal square difference,
  //  estimated epipolar deformation using on correlation,
  // estimated epipolar deformation using mean reciprocal square difference.
  // }
  // \label{fig:FineCorrelationImageFilterOUTPUT}
  // \end{figure}

  return EXIT_SUCCESS;
}