File: NCCRegistrationFilterExample.cxx

package info (click to toggle)
otb 8.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,030,436 kB
  • sloc: xml: 231,007; cpp: 224,490; ansic: 4,592; sh: 1,790; python: 1,131; perl: 92; makefile: 72
file content (203 lines) | stat: -rw-r--r-- 7,703 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/*
 * Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


/* Example usage:
./NCCRegistrationFilterExample Input/StereoFixed.png \
                               Input/StereoMoving.png \
                               Output/deformationFieldOutput-horizontal.png \
                               Output/deformationFieldOutput-vertical.png \
                               Output/resampledOutput2.png \
                               5 \
                               1.0 \
                               2
*/


// This example demonstrates the use of the \doxygen{otb}{NCCRegistrationFilter}. This filter performs deformation estimation
// by optimising a PDE based on the normalized correlation coefficient. It uses the finite difference solver hierarchy.
//
// The first step toward the use of these filters is to include the proper header files.

#include "otbImageFileWriter.h"
#include "otbImageFileReader.h"

#include "otbNCCRegistrationFilter.h"
#include "itkRecursiveGaussianImageFilter.h"
#include "itkWarpImageFilter.h"

#include "otbImageOfVectorsToMonoChannelExtractROI.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkCastImageFilter.h"

#include <iostream>

int main(int argc, char** argv)
{

  if (argc != 9)
  {
    std::cerr << "Usage: " << argv[0];
    std::cerr << " fixedFileName movingFileName fieldOutNameHorizontal fieldOutNameVertical imageOutName ";
    std::cerr << "explorationSize bluringSigma nbIterations ";

    return EXIT_FAILURE;
  }

  const unsigned int ImageDimension = 2;

  using PixelType             = double;
  using DisplacementPixelType = itk::Vector<double, ImageDimension>;

  using OutputPixelType = unsigned char;
  using OutputImageType = otb::Image<OutputPixelType, ImageDimension>;

  // Several type of \doxygen{otb}{Image} are required to represent the reference image (fixed)
  // the image we want to register (moving) and the deformation field.

  // Allocate Images
  using MovingImageType       = otb::Image<PixelType, ImageDimension>;
  using FixedImageType        = otb::Image<PixelType, ImageDimension>;
  using DisplacementFieldType = otb::Image<DisplacementPixelType, ImageDimension>;

  using FixedReaderType            = otb::ImageFileReader<FixedImageType>;
  FixedReaderType::Pointer fReader = FixedReaderType::New();
  fReader->SetFileName(argv[1]);

  using MovingReaderType            = otb::ImageFileReader<MovingImageType>;
  MovingReaderType::Pointer mReader = MovingReaderType::New();
  mReader->SetFileName(argv[2]);

  // To make the correlation estimation more robust, the first
  // required step is to blur the input images. This is done using the
  // \doxygen{itk}{RecursiveGaussianImageFilter}:

  // Blur input images
  using FixedBlurType = itk::RecursiveGaussianImageFilter<FixedImageType, FixedImageType>;

  FixedBlurType::Pointer fBlur = FixedBlurType::New();
  fBlur->SetInput(fReader->GetOutput());
  fBlur->SetSigma(std::stof(argv[7]));

  using MovingBlurType = itk::RecursiveGaussianImageFilter<MovingImageType, MovingImageType>;

  MovingBlurType::Pointer mBlur = MovingBlurType::New();
  mBlur->SetInput(mReader->GetOutput());
  mBlur->SetSigma(std::stof(argv[7]));

  // Now, we need to instantiate the NCCRegistrationFilter which is going to perform the registration:

  // Create the filter
  using RegistrationFilterType = otb::NCCRegistrationFilter<FixedImageType, MovingImageType, DisplacementFieldType>;

  RegistrationFilterType::Pointer registrator = RegistrationFilterType::New();

  registrator->SetMovingImage(mBlur->GetOutput());
  registrator->SetFixedImage(fBlur->GetOutput());

  // Some parameters need to be specified to the NCCRegistrationFilter:
  // \begin{itemize}
  // \item The area where the search is performed. This area is defined by its radius:

  using RadiusType = RegistrationFilterType::RadiusType;

  RadiusType radius;

  radius[0] = std::stoi(argv[6]);
  radius[1] = std::stoi(argv[6]);

  registrator->SetNCCRadius(radius);

  std::cout << "NCC radius " << registrator->GetNCCRadius() << std::endl;

  // \item The number of iterations for the PDE resolution:

  registrator->SetNumberOfIterations(std::stoi(argv[8]));
  // registrator->GetDisplacementField();

  // \end{itemize}
  // The execution of the NCCRegistrationFilter will be triggered by
  // the \code{Update()} call on the writer at the end of the
  // pipeline. Make sure to use a
  // \doxygen{otb}{ImageFileWriter} if you want to benefit
  // from the streaming features.

  using ChannelExtractionFilterType                     = otb::ImageOfVectorsToMonoChannelExtractROI<DisplacementFieldType, MovingImageType>;
  ChannelExtractionFilterType::Pointer channelExtractor = ChannelExtractionFilterType::New();

  channelExtractor->SetInput(registrator->GetOutput());
  channelExtractor->SetChannel(1);

  using RescalerType                  = itk::RescaleIntensityImageFilter<MovingImageType, OutputImageType>;
  RescalerType::Pointer fieldRescaler = RescalerType::New();

  fieldRescaler->SetInput(channelExtractor->GetOutput());
  fieldRescaler->SetOutputMaximum(255);
  fieldRescaler->SetOutputMinimum(0);

  using DFWriterType = otb::ImageFileWriter<OutputImageType>;

  DFWriterType::Pointer dfWriter = DFWriterType::New();
  dfWriter->SetFileName(argv[3]);
  dfWriter->SetInput(fieldRescaler->GetOutput());
  dfWriter->Update();

  channelExtractor->SetChannel(2);
  dfWriter->SetFileName(argv[4]);
  dfWriter->Update();

  using WarperType           = itk::WarpImageFilter<MovingImageType, MovingImageType, DisplacementFieldType>;
  WarperType::Pointer warper = WarperType::New();

  MovingImageType::PixelType padValue = 4.0;

  warper->SetInput(mReader->GetOutput());
  warper->SetDisplacementField(registrator->GetOutput());
  warper->SetEdgePaddingValue(padValue);

  using CastFilterType           = itk::CastImageFilter<MovingImageType, OutputImageType>;
  CastFilterType::Pointer caster = CastFilterType::New();
  caster->SetInput(warper->GetOutput());

  using WriterType = otb::ImageFileWriter<OutputImageType>;

  WriterType::Pointer writer = WriterType::New();
  writer->SetFileName(argv[5]);
  writer->SetInput(caster->GetOutput());
  writer->Update();

  // Figure~\ref{fig:NCCRegistrationFilterOUTPUT} shows the result of
  // applying the disparity map estimation.
  //
  // \begin{figure}
  // \center
  // \includegraphics[width=0.40\textwidth]{StereoFixed.eps}
  // \includegraphics[width=0.40\textwidth]{StereoMoving.eps}
  // \includegraphics[width=0.40\textwidth]{deformationFieldOutput-horizontal.eps}
  // \includegraphics[width=0.40\textwidth]{deformationFieldOutput-vertical.eps}
  // \itkcaption[Displacement field and resampling from NCC registration]{From left
  // to right and top to bottom: fixed input image, moving image with a low stereo angle,
  // estimated deformation field in the horizontal direction, estimated deformation field in the vertical direction.}
  // \label{fig:NCCRegistrationFilterOUTPUT}
  // \end{figure}

  return EXIT_SUCCESS;
}