1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
/*
* Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Example usage:
./StereoReconstructionExample Input/sensor_stereo_left.tif Input/sensor_stereo_right.tif Output/elevationOutput.tif Output/elevationOutputPrintable.png 140
*/
// This example demonstrates the use of the stereo reconstruction chain
// from an image pair. The images are assumed to come from the same sensor
// but with different positions. The approach presented here has the
// following steps:
// \begin{itemize}
// \item Epipolar resampling of the image pair
// \item Dense disparity map estimation
// \item Projection of the disparities on an existing Digital Elevation Model (DEM)
// \end{itemize}
// It is important to note that this method requires the sensor models with
// a pose estimate for each image.
#include "otbStereorectificationDisplacementFieldSource.h"
#include "otbStreamingWarpImageFilter.h"
#include "otbBandMathImageFilter.h"
#include "otbSubPixelDisparityImageFilter.h"
#include "otbDisparityMapMedianFilter.h"
#include "otbDisparityMapToDEMFilter.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbBCOInterpolateImageFunction.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkVectorCastImageFilter.h"
#include "otbImageList.h"
#include "otbImageListToVectorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "otbDEMHandler.h"
int main(int argc, char* argv[])
{
if (argc != 6)
{
std::cerr << "Usage: " << argv[0];
std::cerr << " sensorImage1 sensorImage2 outputDEM outputDEMPNG";
std::cerr << "averageElevation " << std::endl;
return EXIT_FAILURE;
}
using FloatImageType = otb::Image<float, 2>;
using FloatVectorImageType = otb::VectorImage<float, 2>;
using ImageReaderType = otb::ImageFileReader<FloatImageType>;
using WriterType = otb::ImageFileWriter<FloatImageType>;
using OutputPixelType = unsigned char;
using OutputImageType = otb::Image<OutputPixelType, 2>;
using RescalerType = itk::RescaleIntensityImageFilter<FloatImageType, OutputImageType>;
using OutputWriterType = otb::ImageFileWriter<OutputImageType>;
// This example demonstrates the use of the following filters :
// \begin{itemize}
// \item \doxygen{otb}{StereorectificationDisplacementFieldSource}
// \item \doxygen{otb}{StreamingWarpImageFilter}
// \item \doxygen{otb}{PixelWiseBlockMatchingImageFilter}
// \item \doxygen{otb}{otbSubPixelDisparityImageFilter}
// \item \doxygen{otb}{otbDisparityMapMedianFilter}
// \item \doxygen{otb}{DisparityMapToDEMFilter}
// \end{itemize}
using DisplacementFieldSourceType = otb::StereorectificationDisplacementFieldSource<FloatImageType, FloatVectorImageType>;
using DisplacementType = itk::Vector<double, 2>;
using DisplacementFieldType = otb::Image<DisplacementType>;
using DisplacementFieldCastFilterType = itk::VectorCastImageFilter<FloatVectorImageType, DisplacementFieldType>;
using WarpFilterType = otb::StreamingWarpImageFilter<FloatImageType, FloatImageType, DisplacementFieldType>;
using BCOInterpolationType = otb::BCOInterpolateImageFunction<FloatImageType>;
using NCCBlockMatchingFunctorType = otb::Functor::NCCBlockMatching<FloatImageType, FloatImageType>;
using NCCBlockMatchingFilterType =
otb::PixelWiseBlockMatchingImageFilter<FloatImageType, FloatImageType, FloatImageType, FloatImageType, NCCBlockMatchingFunctorType>;
using BandMathFilterType = otb::BandMathImageFilter<FloatImageType>;
using NCCSubPixelDisparityFilterType =
otb::SubPixelDisparityImageFilter<FloatImageType, FloatImageType, FloatImageType, FloatImageType, NCCBlockMatchingFunctorType>;
using MedianFilterType = otb::DisparityMapMedianFilter<FloatImageType, FloatImageType, FloatImageType>;
using DisparityToElevationFilterType = otb::DisparityMapToDEMFilter<FloatImageType, FloatImageType, FloatImageType, FloatVectorImageType, FloatImageType>;
double avgElevation = atof(argv[5]);
otb::DEMHandler::GetInstance().SetDefaultHeightAboveEllipsoid(avgElevation);
ImageReaderType::Pointer leftReader = ImageReaderType::New();
ImageReaderType::Pointer rightReader = ImageReaderType::New();
leftReader->SetFileName(argv[1]);
rightReader->SetFileName(argv[2]);
// The image pair is supposed to be in sensor geometry. From two images covering
// nearly the same area, one can estimate a common epipolar geometry. In this geometry,
// an altitude variation corresponds to an horizontal shift between the two images.
// The filter \doxygen{otb}{StereorectificationDisplacementFieldSource} computes the
// deformation grids for each image.
//
// These grids are sampled in epipolar geometry. They have two bands, containing
// the position offset (in physical space units) between the current epipolar
// point and the corresponding sensor point in horizontal and vertical
// direction. They can be computed at a lower resolution than sensor
// resolution. The application \code{StereoRectificationGridGenerator} also
// provides a simple tool to generate the epipolar grids for your image pair.
DisplacementFieldSourceType::Pointer m_DisplacementFieldSource = DisplacementFieldSourceType::New();
m_DisplacementFieldSource->SetLeftImage(leftReader->GetOutput());
m_DisplacementFieldSource->SetRightImage(rightReader->GetOutput());
m_DisplacementFieldSource->SetGridStep(4);
m_DisplacementFieldSource->SetScale(1.0);
// m_DisplacementFieldSource->SetAverageElevation(avgElevation);
m_DisplacementFieldSource->Update();
// Then, the sensor images can be resampled in epipolar geometry, using the
// \doxygen{otb}{StreamingWarpImageFilter}. The application
// \code{GridBasedImageResampling} also gives an easy access to this filter. The user
// can choose the epipolar region to resample, as well as the resampling step
// and the interpolator.
//
// Note that the epipolar image size can be retrieved from the stereo rectification grid
// filter.
FloatImageType::SpacingType epipolarSpacing;
epipolarSpacing[0] = 1.0;
epipolarSpacing[1] = 1.0;
FloatImageType::SizeType epipolarSize;
epipolarSize = m_DisplacementFieldSource->GetRectifiedImageSize();
FloatImageType::PointType epipolarOrigin;
epipolarOrigin[0] = 0.0;
epipolarOrigin[1] = 0.0;
FloatImageType::PixelType defaultValue = 0;
// The deformation grids are casted into deformation fields, then the left
// and right sensor images are resampled.
DisplacementFieldCastFilterType::Pointer m_LeftDisplacementFieldCaster = DisplacementFieldCastFilterType::New();
m_LeftDisplacementFieldCaster->SetInput(m_DisplacementFieldSource->GetLeftDisplacementFieldOutput());
m_LeftDisplacementFieldCaster->GetOutput()->UpdateOutputInformation();
BCOInterpolationType::Pointer leftInterpolator = BCOInterpolationType::New();
leftInterpolator->SetRadius(2);
WarpFilterType::Pointer m_LeftWarpImageFilter = WarpFilterType::New();
m_LeftWarpImageFilter->SetInput(leftReader->GetOutput());
m_LeftWarpImageFilter->SetDisplacementField(m_LeftDisplacementFieldCaster->GetOutput());
m_LeftWarpImageFilter->SetInterpolator(leftInterpolator);
m_LeftWarpImageFilter->SetOutputSize(epipolarSize);
m_LeftWarpImageFilter->SetOutputSpacing(epipolarSpacing);
m_LeftWarpImageFilter->SetOutputOrigin(epipolarOrigin);
m_LeftWarpImageFilter->SetEdgePaddingValue(defaultValue);
DisplacementFieldCastFilterType::Pointer m_RightDisplacementFieldCaster = DisplacementFieldCastFilterType::New();
m_RightDisplacementFieldCaster->SetInput(m_DisplacementFieldSource->GetRightDisplacementFieldOutput());
m_RightDisplacementFieldCaster->GetOutput()->UpdateOutputInformation();
BCOInterpolationType::Pointer rightInterpolator = BCOInterpolationType::New();
rightInterpolator->SetRadius(2);
WarpFilterType::Pointer m_RightWarpImageFilter = WarpFilterType::New();
m_RightWarpImageFilter->SetInput(rightReader->GetOutput());
m_RightWarpImageFilter->SetDisplacementField(m_RightDisplacementFieldCaster->GetOutput());
m_RightWarpImageFilter->SetInterpolator(rightInterpolator);
m_RightWarpImageFilter->SetOutputSize(epipolarSize);
m_RightWarpImageFilter->SetOutputSpacing(epipolarSpacing);
m_RightWarpImageFilter->SetOutputOrigin(epipolarOrigin);
m_RightWarpImageFilter->SetEdgePaddingValue(defaultValue);
// Since the resampling produces black regions around the image, it is useless
// to estimate disparities on these \textit{no-data} regions. We use a \doxygen{otb}{BandMathImageFilter}
// to produce a mask on left and right epipolar images.
BandMathFilterType::Pointer m_LBandMathFilter = BandMathFilterType::New();
m_LBandMathFilter->SetNthInput(0, m_LeftWarpImageFilter->GetOutput(), "inleft");
#ifdef OTB_MUPARSER_HAS_CXX_LOGICAL_OPERATORS
std::string leftExpr = "inleft != 0 ? 255 : 0";
#else
std::string leftExpr = "if(inleft != 0,255,0)";
#endif
m_LBandMathFilter->SetExpression(leftExpr);
BandMathFilterType::Pointer m_RBandMathFilter = BandMathFilterType::New();
m_RBandMathFilter->SetNthInput(0, m_RightWarpImageFilter->GetOutput(), "inright");
#ifdef OTB_MUPARSER_HAS_CXX_LOGICAL_OPERATORS
std::string rightExpr = "inright != 0 ? 255 : 0";
#else
std::string rightExpr = "if(inright != 0,255,0)";
#endif
m_RBandMathFilter->SetExpression(rightExpr);
// Once the two sensor images have been resampled in epipolar geometry, the
// disparity map can be computed. The approach presented here is a 2D matching
// based on a pixel-wise metric optimization. This approach doesn't give the best
// results compared to global optimization methods, but it is suitable for
// streaming and threading on large images.
//
// The major filter used for this step is \doxygen{otb}{PixelWiseBlockMatchingImageFilter}.
// The metric is computed on a window centered around the tested epipolar position.
// It performs a pixel-to-pixel matching between the two epipolar images. The output disparities
// are given as index offset from left to right position. The following features are available
// in this filter:
// \begin{itemize}
// \item Available metrics : SSD, NCC and $L^{p}$ pseudo norm (computed on a square window)
// \item Rectangular disparity exploration area.
// \item Input masks for left and right images (optional).
// \item Output metric values (optional).
// \item Possibility to use input disparity estimate (as a uniform value or a full map) and an
// exploration radius around these values to reduce the size of the exploration area (optional).
// \end{itemize}
NCCBlockMatchingFilterType::Pointer m_NCCBlockMatcher = NCCBlockMatchingFilterType::New();
m_NCCBlockMatcher->SetLeftInput(m_LeftWarpImageFilter->GetOutput());
m_NCCBlockMatcher->SetRightInput(m_RightWarpImageFilter->GetOutput());
m_NCCBlockMatcher->SetRadius(3);
m_NCCBlockMatcher->SetMinimumHorizontalDisparity(-24);
m_NCCBlockMatcher->SetMaximumHorizontalDisparity(0);
m_NCCBlockMatcher->SetMinimumVerticalDisparity(0);
m_NCCBlockMatcher->SetMaximumVerticalDisparity(0);
m_NCCBlockMatcher->MinimizeOff();
m_NCCBlockMatcher->SetLeftMaskInput(m_LBandMathFilter->GetOutput());
m_NCCBlockMatcher->SetRightMaskInput(m_RBandMathFilter->GetOutput());
// Some other filters have been added to enhance these \textit{pixel-to-pixel} disparities. The filter
// \doxygen{otb}{SubPixelDisparityImageFilter} can estimate the disparities with sub-pixel
// precision. Several interpolation methods can be used : parabolic fit, triangular fit, and
// dichotomy search.
NCCSubPixelDisparityFilterType::Pointer m_NCCSubPixFilter = NCCSubPixelDisparityFilterType::New();
m_NCCSubPixFilter->SetInputsFromBlockMatchingFilter(m_NCCBlockMatcher);
m_NCCSubPixFilter->SetRefineMethod(NCCSubPixelDisparityFilterType::DICHOTOMY);
// The filter \doxygen{otb}{DisparityMapMedianFilter} can be used to remove outliers. It has two
// parameters:
// \begin{itemize}
// \item The radius of the local neighborhood to compute the median
// \item An incoherence threshold to reject disparities whose distance from the local median
// is superior to the threshold.
// \end{itemize}
MedianFilterType::Pointer m_HMedianFilter = MedianFilterType::New();
m_HMedianFilter->SetInput(m_NCCSubPixFilter->GetHorizontalDisparityOutput());
m_HMedianFilter->SetRadius(2);
m_HMedianFilter->SetIncoherenceThreshold(2.0);
m_HMedianFilter->SetMaskInput(m_LBandMathFilter->GetOutput());
MedianFilterType::Pointer m_VMedianFilter = MedianFilterType::New();
m_VMedianFilter->SetInput(m_NCCSubPixFilter->GetVerticalDisparityOutput());
m_VMedianFilter->SetRadius(2);
m_VMedianFilter->SetIncoherenceThreshold(2.0);
m_VMedianFilter->SetMaskInput(m_LBandMathFilter->GetOutput());
// The application \code{PixelWiseBlockMatching} contains all these filters and
// provides a single interface to compute your disparity maps.
//
// The disparity map obtained with the previous step usually gives a good idea of
// the altitude profile. However, it is more useful to study altitude with a DEM (Digital
// Elevation Model) representation.
//
// The filter \doxygen{otb}{DisparityMapToDEMFilter} performs this last step. The behavior
// of this filter is to :
// \begin{itemize}
// \item Compute the DEM extent from the left sensor image envelope (spacing is set by the user)
// \item Compute the left and right rays corresponding to each valid disparity
// \item Compute the intersection with the \textit{mid-point} method
// \item If the 3D point falls inside a DEM cell and has a greater elevation than the
// current height, the cell height is updated
// \end{itemize}
// The rule of keeping the highest elevation makes sense for buildings seen from the side
// because the roof edges elevation has to be kept. However this rule is not suited for
// noisy disparities.
//
// The application \code{DisparityMapToElevationMap} also gives an example of use.
DisparityToElevationFilterType::Pointer m_DispToElev = DisparityToElevationFilterType::New();
m_DispToElev->SetHorizontalDisparityMapInput(m_HMedianFilter->GetOutput());
m_DispToElev->SetVerticalDisparityMapInput(m_VMedianFilter->GetOutput());
m_DispToElev->SetLeftInput(leftReader->GetOutput());
m_DispToElev->SetRightInput(rightReader->GetOutput());
m_DispToElev->SetLeftEpipolarGridInput(m_DisplacementFieldSource->GetLeftDisplacementFieldOutput());
m_DispToElev->SetRightEpipolarGridInput(m_DisplacementFieldSource->GetRightDisplacementFieldOutput());
m_DispToElev->SetElevationMin(avgElevation - 10.0);
m_DispToElev->SetElevationMax(avgElevation + 80.0);
m_DispToElev->SetDEMGridStep(2.5);
m_DispToElev->SetDisparityMaskInput(m_LBandMathFilter->GetOutput());
// m_DispToElev->SetAverageElevation(avgElevation);
WriterType::Pointer m_DEMWriter = WriterType::New();
m_DEMWriter->SetInput(m_DispToElev->GetOutput());
m_DEMWriter->SetFileName(argv[3]);
m_DEMWriter->Update();
RescalerType::Pointer fieldRescaler = RescalerType::New();
fieldRescaler->SetInput(m_DispToElev->GetOutput());
fieldRescaler->SetOutputMaximum(255);
fieldRescaler->SetOutputMinimum(0);
OutputWriterType::Pointer fieldWriter = OutputWriterType::New();
fieldWriter->SetInput(fieldRescaler->GetOutput());
fieldWriter->SetFileName(argv[4]);
fieldWriter->Update();
// Figure~\ref{fig:STEREORECONSTRUCTIONOUTPUT} shows the result of applying
// terrain reconstruction based using pixel-wise block matching, sub-pixel
// interpolation and DEM estimation using a pair of Pleiades images over the
// \textit{Stadium} in Toulouse, France.
// \begin{figure}
// \center
// \includegraphics[width=0.4\textwidth]{elevationOutputPrintable.eps}
// \itkcaption[From stereo pair to elevation]{DEM image estimated from the disparity.}
// \label{fig:STEREORECONSTRUCTIONOUTPUT}
// \end{figure}
return EXIT_SUCCESS;
}
|