1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
/*
* Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Example usage:
./CloudDetectionExample Input/CloudsOnReunion.tif \
Output/CloudDetectionOutput.tif \
Output/pretty_CloudsOnReunion.png \
Output/pretty_CloudDetectionOutput.png \
553 \
467 \
734 \
581 \
0.4 \
0.6 \
1.0
*/
// The cloud detection functor is a processing chain composed by the
// computation of a spectral angle (with SpectralAngleFunctor). The
// result is multiplied by a gaussian factor (with
// CloudEstimatorFunctor) and finally thresholded to obtain a binary
// image (with CloudDetectionFilter). However, modifications can be
// added in the pipeline to adapt to a particular situation.
//
// This example demonstrates the use of the
// \doxygen{otb}{CloudDetectionFilter}. This filter uses the spectral
// angle principle to measure the radiometric gap between a reference
// pixel and the other pixels of the image.
//
// The first step toward the use of this filter is the inclusion of
// the proper header files.
#include "otbCloudDetectionFilter.h"
#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "otbVectorRescaleIntensityImageFilter.h"
#include "otbMultiChannelExtractROI.h"
int main(int argc, char* argv[])
{
if (argc != 12)
{
std::cerr << "Usage: " << argv[0];
std::cerr << "inputFileName outputFileName printableInputFileName printableOutputFileName";
std::cerr << "firstPixelComponent secondPixelComponent thirdPixelComponent fourthPixelComponent ";
std::cerr << "variance ";
std::cerr << "minThreshold maxThreshold " << std::endl;
return EXIT_FAILURE;
}
const unsigned int Dimension = 2;
// Then we must decide what pixel type to use for the images. We choose to do
// all the computations in double precision.
using InputPixelType = double;
using OutputPixelType = double;
// The images are defined using the pixel type and the
// dimension. Please note that the
// \doxygen{otb}{CloudDetectionFilter} needs an
// \doxygen{otb}{VectorImage} as input to handle multispectral
// images.
using VectorImageType = otb::VectorImage<InputPixelType, Dimension>;
using VectorPixelType = VectorImageType::PixelType;
using OutputImageType = otb::Image<OutputPixelType, Dimension>;
// We define the functor type that the filter will use. We use the
// \doxygen{otb}{CloudDetectionFunctor}.
using FunctorType = otb::Functor::CloudDetectionFunctor<VectorPixelType, OutputPixelType>;
// Now we can define the \doxygen{otb}{CloudDetectionFilter} that
// takes a multi-spectral image as input and produces a binary
// image.
using CloudDetectionFilterType = otb::CloudDetectionFilter<VectorImageType, OutputImageType, FunctorType>;
// An \doxygen{otb}{ImageFileReader} class is also instantiated in
// order to read image data from a file. Then, an
// \doxygen{otb}{ImageFileWriter} is instantiated in order to write
// the output image to a file.
using ReaderType = otb::ImageFileReader<VectorImageType>;
using WriterType = otb::ImageFileWriter<OutputImageType>;
// The different filters composing our pipeline are created by invoking their
// \code{New()} methods, assigning the results to smart pointers.
ReaderType::Pointer reader = ReaderType::New();
CloudDetectionFilterType::Pointer cloudDetection = CloudDetectionFilterType::New();
WriterType::Pointer writer = WriterType::New();
reader->SetFileName(argv[1]);
cloudDetection->SetInput(reader->GetOutput());
// The \doxygen{otb}{CloudDetectionFilter} needs to have a reference
// pixel corresponding to the spectral content likely to represent a
// cloud. This is done by passing a pixel to the filter. Here we
// suppose that the input image has four spectral bands.
VectorPixelType referencePixel;
referencePixel.SetSize(4);
referencePixel.Fill(0.);
referencePixel[0] = (atof(argv[5]));
referencePixel[1] = (atof(argv[6]));
referencePixel[2] = (atof(argv[7]));
referencePixel[3] = (atof(argv[8]));
cloudDetection->SetReferencePixel(referencePixel);
// We must also set the variance parameter of the filter and the
// parameter of the gaussian functor. The bigger the value, the
// more tolerant the detector will be.
cloudDetection->SetVariance(atof(argv[9]));
// The minimum and maximum thresholds are set to binarise the final result.
// These values have to be between 0 and 1.
cloudDetection->SetMinThreshold(atof(argv[10]));
cloudDetection->SetMaxThreshold(atof(argv[11]));
writer->SetFileName(argv[2]);
writer->SetInput(cloudDetection->GetOutput());
writer->Update();
// Figure~\ref{fig:CLOUDDETECTION_FILTER} shows the result of applying
// the cloud detection filter to a cloudy image.
// \begin{figure} \center
// \includegraphics[width=0.44\textwidth]{pretty_CloudsOnReunion.eps}
// \includegraphics[width=0.44\textwidth]{pretty_CloudDetectionOutput.eps}
// \itkcaption[Cloud Detection Example]{From left to right : original image, cloud mask resulting from processing.}
// \label{fig:CLOUDDETECTION_FILTER}
// \end{figure}
// Pretty image creation for printing
using OutputPrettyImageType = otb::Image<unsigned char, Dimension>;
using InputPrettyImageType = otb::VectorImage<unsigned char, Dimension>;
using WriterPrettyOutputType = otb::ImageFileWriter<OutputPrettyImageType>;
using WriterPrettyInputType = otb::ImageFileWriter<InputPrettyImageType>;
using RescalerOutputType = itk::RescaleIntensityImageFilter<OutputImageType, OutputPrettyImageType>;
using RescalerInputType = otb::VectorRescaleIntensityImageFilter<VectorImageType, InputPrettyImageType>;
using ChannelExtractorType = otb::MultiChannelExtractROI<InputPixelType, InputPixelType>;
ChannelExtractorType::Pointer selecter = ChannelExtractorType::New();
RescalerInputType::Pointer inputRescaler = RescalerInputType::New();
WriterPrettyInputType::Pointer prettyInputWriter = WriterPrettyInputType::New();
selecter->SetInput(reader->GetOutput());
selecter->SetChannel(3);
selecter->SetChannel(2);
selecter->SetChannel(1);
inputRescaler->SetInput(selecter->GetOutput());
VectorPixelType minimum, maximum;
minimum.SetSize(3);
maximum.SetSize(3);
minimum.Fill(0);
maximum.Fill(255);
inputRescaler->SetOutputMinimum(minimum);
inputRescaler->SetOutputMaximum(maximum);
prettyInputWriter->SetFileName(argv[3]);
prettyInputWriter->SetInput(inputRescaler->GetOutput());
RescalerOutputType::Pointer outputRescaler = RescalerOutputType::New();
WriterPrettyOutputType::Pointer prettyOutputWriter = WriterPrettyOutputType::New();
outputRescaler->SetInput(cloudDetection->GetOutput());
outputRescaler->SetOutputMinimum(0);
outputRescaler->SetOutputMaximum(255);
prettyOutputWriter->SetFileName(argv[4]);
prettyOutputWriter->SetInput(outputRescaler->GetOutput());
prettyInputWriter->Update();
prettyOutputWriter->Update();
return EXIT_SUCCESS;
}
|