1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
/*
* Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
/* Example usage:
./EdgeDensityExample Input/suburb2.jpeg Output/EdgeDensityOutput.tif Output/PrettyEdgeDensityOutput.png 7 50 10 1.0 0.01
*/
// This example illustrates the use of the
// \doxygen{otb}{EdgeDensityImageFilter}.
// This filter computes a local density of edges on an image and can
// be useful to detect man made objects or urban areas, for
// instance. The filter has been implemented in a generic way, so that
// the way the edges are detected and the way their density is
// computed can be chosen by the user.
//
// The first step required to use this filter is to include its header file.
#include "otbEdgeDensityImageFilter.h"
// We will also include the header files for the edge detector (a
// Canny filter) and the density estimation (a simple count on a
// binary image).
//
// The first step required to use this filter is to include its header file.
#include "itkCannyEdgeDetectionImageFilter.h"
#include "otbBinaryImageDensityFunction.h"
int main(int itkNotUsed(argc), char* argv[])
{
const char* infname = argv[1];
const char* outfname = argv[2];
const char* prettyfilename = argv[3];
const unsigned int radius = atoi(argv[4]);
/*--*/
const unsigned int Dimension = 2;
using PixelType = float;
/** Variables for the canny detector*/
const PixelType upperThreshold = static_cast<PixelType>(atof(argv[5]));
const PixelType lowerThreshold = static_cast<PixelType>(atof(argv[6]));
const double variance = atof(argv[7]);
const double maximumError = atof(argv[8]);
// As usual, we start by defining the types for the images, the reader
// and the writer.
using ImageType = otb::Image<PixelType, Dimension>;
using ReaderType = otb::ImageFileReader<ImageType>;
using WriterType = otb::ImageFileWriter<ImageType>;
// We define now the type for the function which will be used by the
// edge density filter to estimate this density. Here we choose a
// function which counts the number of non null pixels per area. The
// function takes as template the type of the image to be processed.
using CountFunctionType = otb::BinaryImageDensityFunction<ImageType>;
// These {\em non null pixels} will be the result of an edge
// detector. We use here the classical Canny edge detector, which is
// templated over the input and output image types.
using CannyDetectorType = itk::CannyEdgeDetectionImageFilter<ImageType, ImageType>;
// Finally, we can define the type for the edge density filter which
// takes as template the input and output image types, the edge
// detector type, and the count function type..
using EdgeDensityFilterType = otb::EdgeDensityImageFilter<ImageType, ImageType, CannyDetectorType, CountFunctionType>;
// We can now instantiate the different processing objects of the
// pipeline using the \code{New()} method.
ReaderType::Pointer reader = ReaderType::New();
EdgeDensityFilterType::Pointer filter = EdgeDensityFilterType::New();
CannyDetectorType::Pointer cannyFilter = CannyDetectorType::New();
WriterType::Pointer writer = WriterType::New();
// The edge detection filter needs to be instantiated because we
// need to set its parameters. This is what we do here for the Canny
// filter.
cannyFilter->SetUpperThreshold(upperThreshold);
cannyFilter->SetLowerThreshold(lowerThreshold);
cannyFilter->SetVariance(variance);
cannyFilter->SetMaximumError(maximumError);
// After that, we can pass the edge detector to the filter which
// will be used it internally.
filter->SetDetector(cannyFilter);
filter->SetNeighborhoodRadius(radius);
// Finally, we set the file names for the input and the output
// images and we plug the pipeline. The \code{Update()} method of
// the writer will trigger the processing.
reader->SetFileName(infname);
writer->SetFileName(outfname);
filter->SetInput(reader->GetOutput());
writer->SetInput(filter->GetOutput());
writer->Update();
// Figure~\ref{fig:EDGEDENSITY_FILTER} shows the result of applying
// the edge density filter to an image.
// \begin{figure}
// \center
// \includegraphics[width=0.25\textwidth]{suburb2.eps}
// \includegraphics[width=0.25\textwidth]{PrettyEdgeDensityOutput.eps}
// \itkcaption[Edge Density Filter]{Result of applying the
// \doxygen{otb}{EdgeDensityImageFilter} to an image. From left to right :
// original image, edge density.}
// \label{fig:EDGEDENSITY_FILTER}
// \end{figure}
/************* Image for printing **************/
using OutputImageType = otb::Image<unsigned char, 2>;
using RescalerType = itk::RescaleIntensityImageFilter<ImageType, OutputImageType>;
RescalerType::Pointer rescaler = RescalerType::New();
rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);
rescaler->SetInput(filter->GetOutput());
using OutputWriterType = otb::ImageFileWriter<OutputImageType>;
OutputWriterType::Pointer outwriter = OutputWriterType::New();
outwriter->SetFileName(prettyfilename);
outwriter->SetInput(rescaler->GetOutput());
outwriter->Update();
return EXIT_SUCCESS;
}
|