File: RatioLineDetectorExample.cxx

package info (click to toggle)
otb 8.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,030,436 kB
  • sloc: xml: 231,007; cpp: 224,490; ansic: 4,592; sh: 1,790; python: 1,131; perl: 92; makefile: 72
file content (161 lines) | stat: -rw-r--r-- 5,911 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/*
 * Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


/* Example usage:
./RatioLineDetectorExample Input/amst2.png Output/amstLineRatios.png Output/amstLineRatioDirections.png 5 1
*/


// This example illustrates the use of the \doxygen{otb}{RatioLineDetectorImageFilter}.
// This filter is used for line detection in SAR images. Its principle
// is described in \cite{tup-98}: a line is detected if two parallel
// edges are present in the images. These edges are detected with the
// ratio of means detector.
//
// The first step required to use this filter is to include its header file.

#include "otbLineRatioDetectorImageFilter.h"

#include "otbImage.h"
#include "otbImageFileReader.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "otbImageFileWriter.h"

int main(int argc, char* argv[])
{

  if (argc != 6)
  {
    std::cerr << "Usage: " << argv[0] << " inputImageFile ";
    std::cerr << " outputEdgesImageFile outputDirectionsImageFile length width" << std::endl;
    return EXIT_FAILURE;
  }

  //  Then we must decide what pixel type to use for the image. We
  //  choose to make all computations with floating point precision
  //  and rescale the results between 0 and 255 in order to export PNG images.

  using InternalPixelType = float;
  using OutputPixelType   = unsigned char;

  //  The images are defined using the pixel type and the dimension.

  using InternalImageType = otb::Image<InternalPixelType, 2>;
  using OutputImageType   = otb::Image<OutputPixelType, 2>;

  //  The filter can be instantiated using the image types defined above.

  using FilterType = otb::LineRatioDetectorImageFilter<InternalImageType, InternalImageType>;

  //  An \doxygen{otb}{ImageFileReader} class is also instantiated in order to read
  //  image data from a file.

  using ReaderType = otb::ImageFileReader<InternalImageType>;

  // An \doxygen{otb}{ImageFileWriter} is instantiated in order to write the
  // output image to a file.

  using WriterType = otb::ImageFileWriter<OutputImageType>;

  // The intensity rescaling of the results will be carried out by the
  // \code{itk::RescaleIntensityImageFilter} which is templated by the
  // input and output image types.

  using RescalerType = itk::RescaleIntensityImageFilter<InternalImageType, OutputImageType>;

  //  Both the filter and the reader are created by invoking their \code{New()}
  //  methods and assigning the result to SmartPointers.

  ReaderType::Pointer reader = ReaderType::New();
  FilterType::Pointer filter = FilterType::New();

  //  The same is done for the rescaler and the writer.

  RescalerType::Pointer rescaler = RescalerType::New();
  WriterType::Pointer   writer   = WriterType::New();

  reader->SetFileName(argv[1]);

  //  The \code{itk::RescaleIntensityImageFilter} needs to know which
  //  is the minimu and maximum values of the output generated
  //  image. Those can be chosen in a generic way by using the
  //  \code{NumericTraits} functions, since they are templated over
  //  the pixel type.

  rescaler->SetOutputMinimum(itk::NumericTraits<OutputPixelType>::min());
  rescaler->SetOutputMaximum(itk::NumericTraits<OutputPixelType>::max());

  //  The image obtained with the reader is passed as input to the
  //  \doxygen{otb}{LineRatioDetectorImageFilter}. The pipeline is built as follows.
  //
  //  \index{otb::LineRatioDetectorImageFilter!SetInput()}

  filter->SetInput(reader->GetOutput());
  rescaler->SetInput(filter->GetOutput());
  writer->SetInput(rescaler->GetOutput());

  //  The methods \code{SetLengthLine()} and \code{SetWidthLine()}
  //  allow setting the minimum length and the typical width of the
  //  lines which are to be detected.
  //
  //  \index{otb::LineRatioDetector!SetWidthLine()}
  //  \index{otb::LineRatioDetector!SetLengthLine()}

  filter->SetLengthLine(atoi(argv[4]));
  filter->SetWidthLine(atoi(argv[5]));

  //  The filter is executed by invoking the \code{Update()} method. If the
  //  filter is part of a larger image processing pipeline, calling
  //  \code{Update()} on a downstream filter will also trigger update of this
  //  filter.

  filter->Update();

  writer->SetFileName(argv[2]);
  writer->Update();

  // We can also obtain the direction of the lines by invoking the
  // \code{GetOutputDirection()} method.

  writer->SetFileName(argv[3]);
  rescaler->SetInput(filter->GetOutputDirection());
  writer->SetInput(rescaler->GetOutput());
  writer->Update();

  //  Figure~\ref{fig:LINERATIO_FILTER}
  // shows the result of applying the LineRatio edge detector filter
  // to a SAR image.  \begin{figure} \center
  // \includegraphics[width=0.25\textwidth]{amst.eps}
  // \includegraphics[width=0.25\textwidth]{amstLineRatios.eps}
  // \includegraphics[width=0.25\textwidth]{amstLineRatioDirections.eps}
  // \itkcaption[Line Ratio Detector Application]{Result of applying
  // the \doxygen{otb}{LineRatioDetectorImageFilter} to a SAR
  // image. From left to right : original image, line intensity and
  // edge orientation.}  \label{fig:LINERATIO_FILTER} \end{figure}
  //
  //  \relatedClasses
  //  \begin{itemize}
  //  \item \doxygen{otb}{LineCorrelationDetectorImageFilter}
  //  \end{itemize}

  return EXIT_SUCCESS;
}