1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
/*
* Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Example usage:
./TouziEdgeDetectorExample Input/amst2.png Output/amstTouziEdges.png Output/amstTouziDirections.png 3
*/
// This example illustrates the use of the \doxygen{otb}{TouziEdgeDetectorImageFilter}.
// This filter belongs to the family of the fixed false alarm rate
// edge detectors but it is appropriate for SAR images, where the
// speckle noise is considered as multiplicative. By analogy with the
// classical gradient-based edge detectors which are suited to the
// additive noise case, this filter computes a ratio of local means in
// both sides of the edge \cite{touzi88}. In order to have a
// normalized response, the following computation is performed :
// \begin{equation}
// r = 1 - min\{\frac{\mu_A}{\mu_B},\frac{\mu_B}{\mu_A} \},
// \end{equation}
// where $\mu_A$ and $\mu_B$ are the local means computed at both
// sides of the edge. In order to detect edges with any orientation,
// $r$ is computed for the 4 principal directions and the maximum
// response is kept.
//
// The first step required to use this filter is to include its header file.
#include "otbTouziEdgeDetectorImageFilter.h"
#include "otbImageFileReader.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "otbImageFileWriter.h"
int main(int argc, char* argv[])
{
if (argc != 5)
{
std::cerr << "Usage: " << argv[0] << " inputImageFile ";
std::cerr << " outputEdgesImageFile outputDirectionsImageFile radius" << std::endl;
return EXIT_FAILURE;
}
// Then we must decide what pixel type to use for the image. We
// choose to make all computations with floating point precision
// and rescale the results between 0 and 255 in order to export PNG images.
using InternalPixelType = float;
using OutputPixelType = unsigned char;
// The images are defined using the pixel type and the dimension.
using InternalImageType = otb::Image<InternalPixelType, 2>;
using OutputImageType = otb::Image<OutputPixelType, 2>;
// The filter can be instantiated using the image types defined above.
using FilterType = otb::TouziEdgeDetectorImageFilter<InternalImageType, InternalImageType>;
// An \doxygen{otb}{ImageFileReader} class is also instantiated in order to read
// image data from a file.
using ReaderType = otb::ImageFileReader<InternalImageType>;
// An \doxygen{otb}{ImageFileWriter} is instantiated in order to write the
// output image to a file.
using WriterType = otb::ImageFileWriter<OutputImageType>;
// The intensity rescaling of the results will be carried out by the
// \code{itk::RescaleIntensityImageFilter} which is templated by the
// input and output image types.
using RescalerType = itk::RescaleIntensityImageFilter<InternalImageType, OutputImageType>;
// Both the filter and the reader are created by invoking their \code{New()}
// methods and assigning the result to SmartPointers.
ReaderType::Pointer reader = ReaderType::New();
FilterType::Pointer filter = FilterType::New();
// The same is done for the rescaler and the writer.
RescalerType::Pointer rescaler = RescalerType::New();
WriterType::Pointer writer = WriterType::New();
reader->SetFileName(argv[1]);
// The \code{itk::RescaleIntensityImageFilter} needs to know which
// is the minimu and maximum values of the output generated
// image. Those can be chosen in a generic way by using the
// \code{NumericTraits} functions, since they are templated over
// the pixel type.
rescaler->SetOutputMinimum(itk::NumericTraits<OutputPixelType>::min());
rescaler->SetOutputMaximum(itk::NumericTraits<OutputPixelType>::max());
// The image obtained with the reader is passed as input to the
// \doxygen{otb}{TouziEdgeDetectorImageFilter}. The pipeline is built as follows.
//
// \index{otb::TouziEdgeDetectorImageFilter!SetInput()}
filter->SetInput(reader->GetOutput());
rescaler->SetInput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());
// The method \code{SetRadius()} defines the size of the window to
// be used for the computation of the local means.
//
// \index{otb::LeeImageFilter!SetRadius()}
// \index{otb::LeeImageFilter!NbLooks()}
// \index{SetNbLooks()!otb::LeeImageFilter}
FilterType::SizeType Radius;
Radius[0] = atoi(argv[4]);
Radius[1] = atoi(argv[4]);
filter->SetRadius(Radius);
// The filter is executed by invoking the \code{Update()} method. If the
// filter is part of a larger image processing pipeline, calling
// \code{Update()} on a downstream filter will also trigger update of this
// filter.
filter->Update();
writer->SetFileName(argv[2]);
writer->Update();
// We can also obtain the direction of the edges by invoking the
// \code{GetOutputDirection()} method.
writer->SetFileName(argv[3]);
rescaler->SetInput(filter->GetOutputDirection());
writer->SetInput(rescaler->GetOutput());
writer->Update();
// Figure~\ref{fig:TOUZI_FILTER} shows the result of applying the Touzi
// edge detector
// filter to a SAR image.
// \begin{figure}
// \center
// \includegraphics[width=0.25\textwidth]{amst.eps}
// \includegraphics[width=0.25\textwidth]{amstTouziEdges.eps}
// \includegraphics[width=0.25\textwidth]{amstTouziDirections.eps}
// \itkcaption[Touzi Edge Detector Application]{Result of applying the
// \doxygen{otb}{TouziEdgeDetectorImageFilter} to a SAR image. From left to right :
// original image, edge intensity and edge orientation.}
// \label{fig:TOUZI_FILTER}
// \end{figure}
return EXIT_SUCCESS;
}
|