1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
/*
* Copyright (C) 1999-2011 Insight Software Consortium
* Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Example usage:
./BayesianFusionImageFilter Input/multiSpect.tif \
Input/multiSpectInterp.tif \
Input/panchro.tif \
Output/BayesianFusion_0.9999.tif \
Output/pretty_BayesianFusion_0.9999.png \
Output/pretty_multiSpect_0.9999.png \
Output/pretty_multiSpectInterp_0.9999.png \
Output/pretty_panchro_0.9999.png \
0.9999
*/
/* Example usage:
./BayesianFusionImageFilter Input/multiSpect.tif \
Input/multiSpectInterp.tif \
Input/panchro.tif \
Output/BayesianFusion_0.5.tif \
Output/pretty_BayesianFusion_0.5.png \
Output/pretty_multiSpect_0.5.png \
Output/pretty_multiSpectInterp_0.5.png \
Output/pretty_panchro_0.5.png \
0.5
*/
// \index{otb::BayesianFusionFilter}
// \index{otb::BayesianFusionFilter!header}
//
// The following example illustrates the use of the
// \doxygen{otb}{BayesianFusionFilter}. The Bayesian data fusion
// relies on the idea that variables of interest, denoted as vector $\mathbf{Z}$,
// cannot be directly observed. They are linked to the observable variables
// $\mathbf{Y}$ through the following error-like model.
//
// \begin{equation}
// \mathbf{Y} = g(\mathbf{Z}) + \mathbf{E}
// \end{equation}
//
// where g($\mathbf{Z}$) is a set of functionals and $\mathbf{E}$ is a
// vector of random errors that are stochastically independent from $\mathbf{Z}$.
// This algorithm uses elementary probability calculus, and several assumptions to compute
// the data fusion. For more explication see Fasbender, Radoux and Bogaert's
// publication \cite{JRadoux}.
// Three images are used :
// \begin{itemize}
// \item a panchromatic image,
// \item a multispectral image resampled at the panchromatic image spatial resolution,
// \item a multispectral image resampled at the panchromatic image spatial resolution,
// using, e.g. a cubic interpolator.
// \item a float : $\lambda$, the meaning of the weight to be given to the panchromatic
// image compared to the multispectral one.
// \end{itemize}
//
// Let's look at the minimal code required to use this algorithm. First, the following header
// defining the otb::BayesianFusionFilter class must be included.
#include "otbBayesianFusionFilter.h"
#include "otbImage.h"
#include "itkCastImageFilter.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbMultiChannelExtractROI.h"
#include "otbVectorRescaleIntensityImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
int main(int argc, char* argv[])
{
if (argc < 10)
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " inputMultiSpectralImage inputMultiSpectralInterpolatedImage "
<< "inputPanchromatiqueImage outputImage outputImagePrinted "
<< "msPrinted msiPrinted panchroPrinted lambda" << std::endl;
return 1;
}
// The image types are now defined using pixel types and particular
// dimension. The panchromatic image is defined as an \doxygen{otb}{Image}
// and the multispectral one as \doxygen{otb}{VectorImage}.
using InternalPixelType = double;
const unsigned int Dimension = 2;
using PanchroImageType = otb::Image<InternalPixelType, Dimension>;
using MultiSpecImageType = otb::VectorImage<InternalPixelType, Dimension>;
using OutputPixelType = double;
using OutputImageType = otb::VectorImage<OutputPixelType, Dimension>;
// We instantiate reader and writer types
//
using ReaderVectorType = otb::ImageFileReader<MultiSpecImageType>;
using ReaderType = otb::ImageFileReader<PanchroImageType>;
using WriterType = otb::ImageFileWriter<OutputImageType>;
ReaderVectorType::Pointer multiSpectReader = ReaderVectorType::New();
ReaderVectorType::Pointer multiSpectInterpReader = ReaderVectorType::New();
ReaderType::Pointer panchroReader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
multiSpectReader->SetFileName(argv[1]);
multiSpectInterpReader->SetFileName(argv[2]);
panchroReader->SetFileName(argv[3]);
writer->SetFileName(argv[4]);
// The Bayesian data fusion filter type is instantiated using the images types as
// a template parameters.
using BayesianFusionFilterType = otb::BayesianFusionFilter<MultiSpecImageType, MultiSpecImageType, PanchroImageType, OutputImageType>;
// Next the filter is created by invoking the \code{New()} method and
// assigning the result to a \doxygen{itk}{SmartPointer}.
BayesianFusionFilterType::Pointer bayesianFilter = BayesianFusionFilterType::New();
// Now the multi spectral image, the interpolated multi spectral image and
// the panchromatic image are given as inputs to the filter.
bayesianFilter->SetMultiSpect(multiSpectReader->GetOutput());
bayesianFilter->SetMultiSpectInterp(multiSpectInterpReader->GetOutput());
bayesianFilter->SetPanchro(panchroReader->GetOutput());
writer->SetInput(bayesianFilter->GetOutput());
// The BayesianFusionFilter requires defining one parameter : $\lambda$.
// The $\lambda$ parameter can be used to tune the fusion toward either a high color
// consistency or sharp details. Typical $\lambda$ value range in $[0.5, 1[$, where higher
// values yield sharper details. by default $\lambda$ is set at 0.9999.
bayesianFilter->SetLambda(atof(argv[9]));
// The invocation of the \code{Update()} method on the writer triggers the
// execution of the pipeline. It is recommended to place update calls in a
// \code{try/catch} block in case errors occur and exceptions are thrown.
try
{
writer->Update();
}
catch (itk::ExceptionObject& excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}
// Create an 3 band images for the software guide
using OutputPixelType2 = unsigned char;
using OutputVectorImageType = otb::VectorImage<OutputPixelType2, Dimension>;
using VectorWriterType = otb::ImageFileWriter<OutputVectorImageType>;
using VectorRescalerType = otb::VectorRescaleIntensityImageFilter<MultiSpecImageType, OutputVectorImageType>;
using VectorRescalerBayesianType = otb::VectorRescaleIntensityImageFilter<OutputImageType, OutputVectorImageType>;
using CasterType = otb::ImageToVectorImageCastFilter<PanchroImageType, MultiSpecImageType>;
using ChannelExtractorType = otb::MultiChannelExtractROI<OutputPixelType2, OutputPixelType2>;
multiSpectReader->GenerateOutputInformation();
multiSpectInterpReader->GenerateOutputInformation();
CasterType::Pointer cast = CasterType::New();
cast->SetInput(panchroReader->GetOutput());
OutputVectorImageType::PixelType minimum, maximum;
minimum.SetSize(multiSpectReader->GetOutput()->GetNumberOfComponentsPerPixel());
maximum.SetSize(multiSpectReader->GetOutput()->GetNumberOfComponentsPerPixel());
minimum.Fill(0);
maximum.Fill(255);
VectorRescalerType::Pointer vrms = VectorRescalerType::New();
VectorRescalerType::Pointer vrmsi = VectorRescalerType::New();
VectorRescalerBayesianType::Pointer vrb = VectorRescalerBayesianType::New();
vrms->SetInput(multiSpectReader->GetOutput());
vrms->SetOutputMinimum(minimum);
vrms->SetOutputMaximum(maximum);
vrms->SetClampThreshold(0.01);
vrmsi->SetInput(multiSpectInterpReader->GetOutput());
vrmsi->SetOutputMinimum(minimum);
vrmsi->SetOutputMaximum(maximum);
vrmsi->SetClampThreshold(0.01);
vrb->SetInput(bayesianFilter->GetOutput());
vrb->SetOutputMinimum(minimum);
vrb->SetOutputMaximum(maximum);
vrb->SetClampThreshold(0.01);
VectorRescalerType::Pointer rp = VectorRescalerType::New();
rp->SetInput(cast->GetOutput());
minimum.SetSize(1);
maximum.SetSize(1);
minimum.Fill(0);
maximum.Fill(255);
rp->SetOutputMinimum(minimum);
rp->SetOutputMaximum(maximum);
rp->SetClampThreshold(0.01);
ChannelExtractorType::Pointer selecterms = ChannelExtractorType::New();
ChannelExtractorType::Pointer selectermsi = ChannelExtractorType::New();
ChannelExtractorType::Pointer selecterf = ChannelExtractorType::New();
selecterms->SetInput(vrms->GetOutput());
// selecterms->SetExtractionRegion(multiSpectReader->GetOutput()->GetLargestPossibleRegion());
selecterms->SetChannel(2);
selecterms->SetChannel(3);
selecterms->SetChannel(4);
selectermsi->SetInput(vrmsi->GetOutput());
// selectermsi->SetExtractionRegion(multiSpectInterpReader->GetOutput()->GetLargestPossibleRegion());
selectermsi->SetChannel(2);
selectermsi->SetChannel(3);
selectermsi->SetChannel(4);
selecterf->SetInput(vrb->GetOutput());
// selecterf->SetExtractionRegion(bayesianFilter->GetOutput()->GetLargestPossibleRegion());
selecterf->SetChannel(2);
selecterf->SetChannel(3);
selecterf->SetChannel(4);
VectorWriterType::Pointer vectWriterms = VectorWriterType::New();
VectorWriterType::Pointer vectWritermsi = VectorWriterType::New();
VectorWriterType::Pointer vectWriterf = VectorWriterType::New();
VectorWriterType::Pointer vectWriterp = VectorWriterType::New();
vectWriterf->SetFileName(argv[5]);
vectWriterf->SetInput(selecterf->GetOutput());
vectWriterms->SetFileName(argv[6]);
vectWriterms->SetInput(selecterms->GetOutput());
vectWritermsi->SetFileName(argv[7]);
vectWritermsi->SetInput(selectermsi->GetOutput());
vectWriterp->SetFileName(argv[8]);
vectWriterp->SetInput(rp->GetOutput());
try
{
vectWriterms->Update();
vectWritermsi->Update();
vectWriterf->Update();
vectWriterp->Update();
}
catch (itk::ExceptionObject& excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}
catch (...)
{
std::cout << "Unknown exception !" << std::endl;
return EXIT_FAILURE;
}
// Let's now run this example using as input the images
// \code{multiSpect.tif} , \code{multiSpectInterp.tif} and \code{panchro.tif}
// provided in the directory \code{Examples/Data}. The results
// obtained for 2 different values for $\lambda$ are shown in figure
// \ref{fig:BayesianImageFusionFilterInput}.
//
//
// \begin{figure} \center
// \includegraphics[width=0.24\textwidth]{pretty_multiSpect_0.5.eps}
// \includegraphics[width=0.24\textwidth]{pretty_multiSpectInterp_0.5.eps}
// \includegraphics[width=0.24\textwidth]{pretty_panchro_0.5.eps}
// \itkcaption[Bayesian Data Fusion Example inputs]{Input
// images used for this example (\copyright European Space Imaging).}
// \label{fig:BayesianImageFusionFilterInput}
// \end{figure}
// \begin{figure} \center
// \includegraphics[width=0.24\textwidth]{pretty_BayesianFusion_0.5.eps}
// \includegraphics[width=0.24\textwidth]{pretty_BayesianFusion_0.9999.eps}
// \itkcaption[Bayesian Data Fusion results]{Fusion results
// for the Bayesian Data Fusion filter for $\lambda = 0.5$ on the left and $\lambda = 0.9999$ on the right.}
// \label{fig:BayesianImageFusionFilterOutput}
// \end{figure}
//
return EXIT_SUCCESS;
}
|