File: BayesianFusionImageFilter.cxx

package info (click to toggle)
otb 8.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,030,436 kB
  • sloc: xml: 231,007; cpp: 224,490; ansic: 4,592; sh: 1,790; python: 1,131; perl: 92; makefile: 72
file content (300 lines) | stat: -rw-r--r-- 12,200 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/*
 * Copyright (C) 1999-2011 Insight Software Consortium
 * Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


/* Example usage:
./BayesianFusionImageFilter Input/multiSpect.tif \
                            Input/multiSpectInterp.tif \
                            Input/panchro.tif \
                            Output/BayesianFusion_0.9999.tif \
                            Output/pretty_BayesianFusion_0.9999.png \
                            Output/pretty_multiSpect_0.9999.png \
                            Output/pretty_multiSpectInterp_0.9999.png \
                            Output/pretty_panchro_0.9999.png \
                            0.9999
*/


/* Example usage:
./BayesianFusionImageFilter Input/multiSpect.tif \
                            Input/multiSpectInterp.tif \
                            Input/panchro.tif \
                            Output/BayesianFusion_0.5.tif \
                            Output/pretty_BayesianFusion_0.5.png \
                            Output/pretty_multiSpect_0.5.png \
                            Output/pretty_multiSpectInterp_0.5.png \
                            Output/pretty_panchro_0.5.png \
                            0.5
*/


// \index{otb::BayesianFusionFilter}
// \index{otb::BayesianFusionFilter!header}
//
// The following example illustrates the use of the
// \doxygen{otb}{BayesianFusionFilter}. The Bayesian data fusion
// relies on the idea that variables of interest, denoted as vector $\mathbf{Z}$,
// cannot be directly observed. They are linked to the observable variables
// $\mathbf{Y}$ through the following error-like model.
//
// \begin{equation}
// \mathbf{Y} = g(\mathbf{Z}) + \mathbf{E}
// \end{equation}
//
// where g($\mathbf{Z}$) is a set of functionals and $\mathbf{E}$ is a
// vector of random errors that are stochastically independent from $\mathbf{Z}$.
// This algorithm uses elementary probability calculus, and several assumptions to compute
// the data fusion. For more explication see Fasbender, Radoux and Bogaert's
// publication \cite{JRadoux}.
// Three images are used :
// \begin{itemize}
// \item a panchromatic image,
// \item a multispectral image resampled at the panchromatic image spatial resolution,
// \item a multispectral image resampled at the panchromatic image spatial resolution,
// using, e.g. a cubic interpolator.
// \item a float : $\lambda$, the meaning of the weight to be given to the panchromatic
// image compared to the multispectral one.
// \end{itemize}
//
// Let's look at the minimal code required to use this algorithm. First, the following header
// defining the otb::BayesianFusionFilter class must be included.

#include "otbBayesianFusionFilter.h"

#include "otbImage.h"
#include "itkCastImageFilter.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbMultiChannelExtractROI.h"
#include "otbVectorRescaleIntensityImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"

int main(int argc, char* argv[])
{
  if (argc < 10)
  {
    std::cerr << "Missing Parameters " << std::endl;
    std::cerr << "Usage: " << argv[0];
    std::cerr << " inputMultiSpectralImage inputMultiSpectralInterpolatedImage "
              << "inputPanchromatiqueImage outputImage outputImagePrinted "
              << "msPrinted msiPrinted panchroPrinted lambda" << std::endl;
    return 1;
  }

  //  The image types are now defined using pixel types and particular
  //  dimension. The panchromatic image is defined as an \doxygen{otb}{Image}
  //  and the multispectral one as \doxygen{otb}{VectorImage}.

  using InternalPixelType      = double;
  const unsigned int Dimension = 2;
  using PanchroImageType       = otb::Image<InternalPixelType, Dimension>;
  using MultiSpecImageType     = otb::VectorImage<InternalPixelType, Dimension>;

  using OutputPixelType = double;
  using OutputImageType = otb::VectorImage<OutputPixelType, Dimension>;

  // We instantiate reader and writer types
  //
  using ReaderVectorType = otb::ImageFileReader<MultiSpecImageType>;
  using ReaderType       = otb::ImageFileReader<PanchroImageType>;
  using WriterType       = otb::ImageFileWriter<OutputImageType>;

  ReaderVectorType::Pointer multiSpectReader       = ReaderVectorType::New();
  ReaderVectorType::Pointer multiSpectInterpReader = ReaderVectorType::New();
  ReaderType::Pointer       panchroReader          = ReaderType::New();
  WriterType::Pointer       writer                 = WriterType::New();

  multiSpectReader->SetFileName(argv[1]);
  multiSpectInterpReader->SetFileName(argv[2]);
  panchroReader->SetFileName(argv[3]);
  writer->SetFileName(argv[4]);

  //  The Bayesian data fusion filter type is instantiated using the images types as
  //  a template parameters.

  using BayesianFusionFilterType = otb::BayesianFusionFilter<MultiSpecImageType, MultiSpecImageType, PanchroImageType, OutputImageType>;

  //  Next the filter is created by invoking the \code{New()} method and
  //  assigning the result to a \doxygen{itk}{SmartPointer}.

  BayesianFusionFilterType::Pointer bayesianFilter = BayesianFusionFilterType::New();

  //  Now the multi spectral image, the interpolated multi spectral image and
  //  the panchromatic image are given as inputs to the filter.

  bayesianFilter->SetMultiSpect(multiSpectReader->GetOutput());
  bayesianFilter->SetMultiSpectInterp(multiSpectInterpReader->GetOutput());
  bayesianFilter->SetPanchro(panchroReader->GetOutput());

  writer->SetInput(bayesianFilter->GetOutput());

  //  The BayesianFusionFilter requires defining one parameter : $\lambda$.
  //  The $\lambda$ parameter can be used to tune the fusion toward either a high color
  //  consistency or sharp details. Typical $\lambda$ value range in  $[0.5, 1[$,  where higher
  //  values yield sharper details. by default $\lambda$ is set at 0.9999.

  bayesianFilter->SetLambda(atof(argv[9]));

  //  The invocation of the \code{Update()} method on the writer triggers the
  //  execution of the pipeline.  It is recommended to place update calls in a
  //  \code{try/catch} block in case errors occur and exceptions are thrown.

  try
  {
    writer->Update();
  }
  catch (itk::ExceptionObject& excep)
  {
    std::cerr << "Exception caught !" << std::endl;
    std::cerr << excep << std::endl;
  }

  // Create an 3 band images for the software guide
  using OutputPixelType2           = unsigned char;
  using OutputVectorImageType      = otb::VectorImage<OutputPixelType2, Dimension>;
  using VectorWriterType           = otb::ImageFileWriter<OutputVectorImageType>;
  using VectorRescalerType         = otb::VectorRescaleIntensityImageFilter<MultiSpecImageType, OutputVectorImageType>;
  using VectorRescalerBayesianType = otb::VectorRescaleIntensityImageFilter<OutputImageType, OutputVectorImageType>;
  using CasterType                 = otb::ImageToVectorImageCastFilter<PanchroImageType, MultiSpecImageType>;
  using ChannelExtractorType       = otb::MultiChannelExtractROI<OutputPixelType2, OutputPixelType2>;

  multiSpectReader->GenerateOutputInformation();
  multiSpectInterpReader->GenerateOutputInformation();

  CasterType::Pointer cast = CasterType::New();
  cast->SetInput(panchroReader->GetOutput());

  OutputVectorImageType::PixelType minimum, maximum;
  minimum.SetSize(multiSpectReader->GetOutput()->GetNumberOfComponentsPerPixel());
  maximum.SetSize(multiSpectReader->GetOutput()->GetNumberOfComponentsPerPixel());
  minimum.Fill(0);
  maximum.Fill(255);

  VectorRescalerType::Pointer         vrms  = VectorRescalerType::New();
  VectorRescalerType::Pointer         vrmsi = VectorRescalerType::New();
  VectorRescalerBayesianType::Pointer vrb   = VectorRescalerBayesianType::New();

  vrms->SetInput(multiSpectReader->GetOutput());
  vrms->SetOutputMinimum(minimum);
  vrms->SetOutputMaximum(maximum);
  vrms->SetClampThreshold(0.01);

  vrmsi->SetInput(multiSpectInterpReader->GetOutput());
  vrmsi->SetOutputMinimum(minimum);
  vrmsi->SetOutputMaximum(maximum);
  vrmsi->SetClampThreshold(0.01);

  vrb->SetInput(bayesianFilter->GetOutput());
  vrb->SetOutputMinimum(minimum);
  vrb->SetOutputMaximum(maximum);
  vrb->SetClampThreshold(0.01);

  VectorRescalerType::Pointer rp = VectorRescalerType::New();
  rp->SetInput(cast->GetOutput());
  minimum.SetSize(1);
  maximum.SetSize(1);
  minimum.Fill(0);
  maximum.Fill(255);
  rp->SetOutputMinimum(minimum);
  rp->SetOutputMaximum(maximum);
  rp->SetClampThreshold(0.01);

  ChannelExtractorType::Pointer selecterms  = ChannelExtractorType::New();
  ChannelExtractorType::Pointer selectermsi = ChannelExtractorType::New();
  ChannelExtractorType::Pointer selecterf   = ChannelExtractorType::New();

  selecterms->SetInput(vrms->GetOutput());
  // selecterms->SetExtractionRegion(multiSpectReader->GetOutput()->GetLargestPossibleRegion());
  selecterms->SetChannel(2);
  selecterms->SetChannel(3);
  selecterms->SetChannel(4);

  selectermsi->SetInput(vrmsi->GetOutput());
  // selectermsi->SetExtractionRegion(multiSpectInterpReader->GetOutput()->GetLargestPossibleRegion());
  selectermsi->SetChannel(2);
  selectermsi->SetChannel(3);
  selectermsi->SetChannel(4);

  selecterf->SetInput(vrb->GetOutput());
  // selecterf->SetExtractionRegion(bayesianFilter->GetOutput()->GetLargestPossibleRegion());
  selecterf->SetChannel(2);
  selecterf->SetChannel(3);
  selecterf->SetChannel(4);

  VectorWriterType::Pointer vectWriterms  = VectorWriterType::New();
  VectorWriterType::Pointer vectWritermsi = VectorWriterType::New();
  VectorWriterType::Pointer vectWriterf   = VectorWriterType::New();
  VectorWriterType::Pointer vectWriterp   = VectorWriterType::New();

  vectWriterf->SetFileName(argv[5]);
  vectWriterf->SetInput(selecterf->GetOutput());
  vectWriterms->SetFileName(argv[6]);
  vectWriterms->SetInput(selecterms->GetOutput());
  vectWritermsi->SetFileName(argv[7]);
  vectWritermsi->SetInput(selectermsi->GetOutput());
  vectWriterp->SetFileName(argv[8]);
  vectWriterp->SetInput(rp->GetOutput());

  try
  {
    vectWriterms->Update();
    vectWritermsi->Update();
    vectWriterf->Update();
    vectWriterp->Update();
  }
  catch (itk::ExceptionObject& excep)
  {
    std::cerr << "Exception caught !" << std::endl;
    std::cerr << excep << std::endl;
  }
  catch (...)
  {
    std::cout << "Unknown exception !" << std::endl;
    return EXIT_FAILURE;
  }

  //  Let's now run this example using as input the images
  //  \code{multiSpect.tif} , \code{multiSpectInterp.tif} and \code{panchro.tif}
  //  provided in the directory \code{Examples/Data}. The results
  //  obtained for 2 different values for $\lambda$ are shown in figure
  //  \ref{fig:BayesianImageFusionFilterInput}.
  //
  //
  // \begin{figure} \center
  // \includegraphics[width=0.24\textwidth]{pretty_multiSpect_0.5.eps}
  // \includegraphics[width=0.24\textwidth]{pretty_multiSpectInterp_0.5.eps}
  // \includegraphics[width=0.24\textwidth]{pretty_panchro_0.5.eps}
  // \itkcaption[Bayesian Data Fusion Example inputs]{Input
  // images used for this example (\copyright European Space Imaging).}
  // \label{fig:BayesianImageFusionFilterInput}
  // \end{figure}

  // \begin{figure} \center
  // \includegraphics[width=0.24\textwidth]{pretty_BayesianFusion_0.5.eps}
  // \includegraphics[width=0.24\textwidth]{pretty_BayesianFusion_0.9999.eps}
  // \itkcaption[Bayesian Data Fusion results]{Fusion results
  // for the Bayesian Data Fusion filter for $\lambda = 0.5$ on the left and $\lambda = 0.9999$ on the right.}
  // \label{fig:BayesianImageFusionFilterOutput}
  // \end{figure}
  //

  return EXIT_SUCCESS;
}