File: ShapedNeighborhoodIterators1.cxx

package info (click to toggle)
otb 8.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,030,436 kB
  • sloc: xml: 231,007; cpp: 224,490; ansic: 4,592; sh: 1,790; python: 1,131; perl: 92; makefile: 72
file content (203 lines) | stat: -rw-r--r-- 7,036 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/*
 * Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkNeighborhoodAlgorithm.h"
#include <math.h>

// This example uses \doxygen{itk}{ShapedNeighborhoodIterator} to implement a binary
// erosion algorithm.  If we think of an image $I$ as a set of pixel indices,
// then erosion of $I$ by a smaller set $E$, called the \emph{structuring
// element}, is the set of all indices at locations $x$ in $I$ such that when
// $E$ is positioned at $x$, every element in $E$ is also contained in $I$.
//
// This type of algorithm is easy to implement with shaped neighborhood
// iterators because we can use the iterator itself as the structuring element
// $E$ and move it sequentially through all positions $x$.  The result at $x$
// is obtained by checking values in a simple iteration loop through the
// neighborhood stencil.
//
// We need two iterators, a shaped iterator for the input image and a regular
// image iterator for writing results to the output image.

#include "itkConstShapedNeighborhoodIterator.h"
#include "itkImageRegionIterator.h"

int main(int argc, char* argv[])
{
  if (argc < 4)
  {
    std::cerr << "Missing parameters. " << std::endl;
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] << " inputImageFile outputImageFile element_radius" << std::endl;
    return -1;
  }

  // Since we are working with binary images in this example, an \code{unsigned
  // char} pixel type will do.  The image and iterator types are defined using
  // the pixel type.

  using PixelType = unsigned char;
  using ImageType = otb::Image<PixelType, 2>;

  using ShapedNeighborhoodIteratorType = itk::ConstShapedNeighborhoodIterator<ImageType>;

  using IteratorType = itk::ImageRegionIterator<ImageType>;

  using ReaderType           = otb::ImageFileReader<ImageType>;
  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName(argv[1]);

  try
  {
    reader->Update();
  }
  catch (itk::ExceptionObject& err)
  {
    std::cout << "ExceptionObject caught !" << std::endl;
    std::cout << err << std::endl;
    return -1;
  }

  ImageType::Pointer output = ImageType::New();
  output->SetRegions(reader->GetOutput()->GetRequestedRegion());
  output->Allocate();

  // Refer to the examples in Section~\ref{sec:itkNeighborhoodIterator} or the
  // source code of this example for a description of how to read the input image
  // and allocate a matching output image.
  //
  // The size of the structuring element is read from the command line and used
  // to define a radius for the shaped neighborhood iterator.  Using the method
  // developed in section~\ref{sec:itkNeighborhoodIterator} to minimize bounds
  // checking, the iterator itself is not initialized until entering the
  // main processing loop.

  unsigned int                               element_radius = ::atoi(argv[3]);
  ShapedNeighborhoodIteratorType::RadiusType radius;
  radius.Fill(element_radius);

  // The face calculator object introduced in
  // Section~\ref{sec:NeighborhoodExample3} is created and used as before.

  using FaceCalculatorType = itk::NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<ImageType>;

  FaceCalculatorType                         faceCalculator;
  FaceCalculatorType::FaceListType           faceList;
  FaceCalculatorType::FaceListType::iterator fit;

  faceList = faceCalculator(reader->GetOutput(), output->GetRequestedRegion(), radius);

  // Now we initialize some variables and constants.

  IteratorType out;

  const PixelType background_value = 0;
  const PixelType foreground_value = 255;
  const float     rad              = static_cast<float>(element_radius);

  // The outer loop of the algorithm is structured as in previous neighborhood
  // iterator examples.  Each region in the face list is processed in turn.  As each new
  // region is processed, the input and output iterators are initialized on that
  // region.
  //
  // The shaped iterator that ranges over the input is our structuring element
  // and its active stencil must be created accordingly.  For this example, the
  // structuring element is shaped like a circle of radius
  // \code{element\_radius}.  Each of the appropriate neighborhood offsets is
  // activated in the double \code{for} loop.

  for (fit = faceList.begin(); fit != faceList.end(); ++fit)
  {
    ShapedNeighborhoodIteratorType it(radius, reader->GetOutput(), *fit);
    out = IteratorType(output, *fit);

    // Creates a circular structuring element by activating all the pixels less
    // than radius distance from the center of the neighborhood.

    for (float y = -rad; y <= rad; y++)
    {
      for (float x = -rad; x <= rad; x++)
      {
        ShapedNeighborhoodIteratorType::OffsetType off;

        float dis = ::sqrt(x * x + y * y);
        if (dis <= rad)
        {
          off[0] = static_cast<int>(x);
          off[1] = static_cast<int>(y);
          it.ActivateOffset(off);
        }
      }
    }

    // The inner loop, which implements the erosion algorithm, is fairly simple.
    // The \code{for} loop steps the input and output iterators through their
    // respective images.  At each step, the active stencil of the shaped iterator
    // is traversed to determine whether all pixels underneath the stencil contain
    // the foreground value, i.e. are contained within the set $I$.  Note the use
    // of the stencil iterator, \code{ci}, in performing this check.

    // Implements erosion
    for (it.GoToBegin(), out.GoToBegin(); !it.IsAtEnd(); ++it, ++out)
    {
      ShapedNeighborhoodIteratorType::ConstIterator ci;

      bool flag = true;
      for (ci = it.Begin(); ci != it.End(); ci++)
      {
        if (ci.Get() == background_value)
        {
          flag = false;
          break;
        }
      }
      if (flag == true)
      {
        out.Set(foreground_value);
      }
      else
      {
        out.Set(background_value);
      }
    }
  }

  using WriterType = otb::ImageFileWriter<ImageType>;

  WriterType::Pointer writer = WriterType::New();
  writer->SetFileName(argv[2]);
  writer->SetInput(output);
  try
  {
    writer->Update();
  }
  catch (itk::ExceptionObject& err)
  {
    std::cout << "ExceptionObject caught !" << std::endl;
    std::cout << err << std::endl;
    return -1;
  }

  return EXIT_SUCCESS;
}