1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
/*
* Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Example usage:
./ShapedNeighborhoodIterators2 Input/BinaryImage.png \
Output/ShapedNeighborhoodIterators1b.png \
4
*/
#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkConstShapedNeighborhoodIterator.h"
#include "itkImageRegionIterator.h"
#include "itkNeighborhoodAlgorithm.h"
#include <math.h>
int main(int argc, char* argv[])
{
if (argc < 4)
{
std::cerr << "Missing parameters. " << std::endl;
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImageFile outputImageFile element_radius" << std::endl;
return -1;
}
using PixelType = unsigned char;
using ImageType = otb::Image<PixelType, 2>;
using ReaderType = otb::ImageFileReader<ImageType>;
using ShapedNeighborhoodIteratorType = itk::ConstShapedNeighborhoodIterator<ImageType>;
using IteratorType = itk::ImageRegionIterator<ImageType>;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);
unsigned int element_radius = ::atoi(argv[3]);
try
{
reader->Update();
}
catch (itk::ExceptionObject& err)
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return -1;
}
ImageType::Pointer output = ImageType::New();
output->SetRegions(reader->GetOutput()->GetRequestedRegion());
output->Allocate();
using FaceCalculatorType = itk::NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<ImageType>;
FaceCalculatorType faceCalculator;
FaceCalculatorType::FaceListType faceList;
FaceCalculatorType::FaceListType::iterator fit;
ShapedNeighborhoodIteratorType::RadiusType radius;
radius.Fill(element_radius);
faceList = faceCalculator(reader->GetOutput(), output->GetRequestedRegion(), radius);
IteratorType out;
const float rad = static_cast<float>(element_radius);
const PixelType background_value = 0;
const PixelType foreground_value = 255;
for (fit = faceList.begin(); fit != faceList.end(); ++fit)
{
ShapedNeighborhoodIteratorType it(radius, reader->GetOutput(), *fit);
out = IteratorType(output, *fit);
// Creates a circular structuring element by activating all the pixels less
// than radius distance from the center of the neighborhood.
for (float y = -rad; y <= rad; y++)
{
for (float x = -rad; x <= rad; x++)
{
ShapedNeighborhoodIteratorType::OffsetType off;
float dis = ::sqrt(x * x + y * y);
if (dis <= rad)
{
off[0] = static_cast<int>(x);
off[1] = static_cast<int>(y);
it.ActivateOffset(off);
}
}
}
// The logic of the inner loop can be rewritten to perform
// dilation. Dilation of the set $I$ by $E$ is the set of all $x$ such that
// $E$ positioned at $x$ contains at least one element in $I$.
// Implements dilation
for (it.GoToBegin(), out.GoToBegin(); !it.IsAtEnd(); ++it, ++out)
{
ShapedNeighborhoodIteratorType::ConstIterator ci;
bool flag = false;
for (ci = it.Begin(); ci != it.End(); ci++)
{
if (ci.Get() != background_value)
{
flag = true;
break;
}
}
if (flag == true)
{
out.Set(foreground_value);
}
else
{
out.Set(background_value);
}
}
}
// The output image is written and visualized directly as a binary image of
// \code{unsigned chars}. Figure~\ref{fig:ShapedNeighborhoodExample2}
// illustrates the results of dilation on the image
// \code{Examples/Data/BinaryImage.png}. Applying erosion and dilation
// in sequence effects the morphological operations of opening and closing.
//
// \begin{figure} \centering
// \includegraphics[width=0.18\textwidth]{BinaryImage.eps}
// %\includegraphics[width=0.18\textwidth]{ShapedNeighborhoodIterators1a.eps}
// \includegraphics[width=0.18\textwidth]{ShapedNeighborhoodIterators1b.eps}
// %\includegraphics[width=0.18\textwidth]{ShapedNeighborhoodIterators1c.eps}
// %\includegraphics[width=0.18\textwidth]{ShapedNeighborhoodIterators1d.eps}
// \itkcaption[Binary image morphology]{The effects of morphological operations
// on a binary image using a circular structuring element of size 4.
// Left: original image. Right: dilation.}
// \protect\label{fig:ShapedNeighborhoodExample2}
// \end{figure}
using WriterType = otb::ImageFileWriter<ImageType>;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName(argv[2]);
writer->SetInput(output);
try
{
writer->Update();
}
catch (itk::ExceptionObject& err)
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return -1;
}
return EXIT_SUCCESS;
}
|