File: GenerateTrainingImageExample.cxx

package info (click to toggle)
otb 8.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,030,436 kB
  • sloc: xml: 231,007; cpp: 224,490; ansic: 4,592; sh: 1,790; python: 1,131; perl: 92; makefile: 72
file content (171 lines) | stat: -rw-r--r-- 4,520 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/*
 * Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


/* Example usage:
./GenerateTrainingImageExample Input/ROI_QB_MUL_4.tif Input/LearningROIs.txt Output/ROI_QB_MUL_4_training.png
*/


// This example illustrates how to generate a training image for an
// image supervised classification.

#include "itkNumericTraits.h"
#include "otbImage.h"
#include "otbImageFileWriter.h"
#include "otbImageFileReader.h"
#include "itkImageRegionIterator.h"

#include <stdio.h>
#include <iostream>
#include <fstream>

int main(int argc, char* argv[])
{
  if (argc != 4)
  {

    std::cout << "Usage : " << argv[0] << " inputImage roiFile outputTrainingImage" << std::endl;
    return EXIT_FAILURE;
  }

  const char* imageFilename  = argv[1];
  const char* roiFilename    = argv[2];
  const char* outputFilename = argv[3];

  using InputPixelType  = unsigned char;
  using OutputPixelType = unsigned char;

  const unsigned int Dimension = 2;

  using InputImageType  = otb::Image<InputPixelType, Dimension>;
  using OutputImageType = otb::Image<OutputPixelType, Dimension>;

  using ReaderType = otb::ImageFileReader<InputImageType>;
  using WriterType = otb::ImageFileWriter<OutputImageType>;

  ReaderType::Pointer reader = ReaderType::New();
  WriterType::Pointer writer = WriterType::New();

  reader->SetFileName(imageFilename);
  writer->SetFileName(outputFilename);

  reader->Update();

  // We allocate the output image
  OutputImageType::Pointer trainingImage = OutputImageType::New();

  // Declare the type of the index to access images
  using myIndexType = itk::Index<Dimension>;

  // Declare the type of the size
  using mySizeType = itk::Size<Dimension>;

  // Declare the type of the Region
  using myRegionType = itk::ImageRegion<Dimension>;

  // Define their size, and start index
  mySizeType size;
  size[0] = reader->GetOutput()->GetRequestedRegion().GetSize()[0];
  size[1] = reader->GetOutput()->GetRequestedRegion().GetSize()[1];

  myIndexType start;
  start[0] = 0;
  start[1] = 0;

  myRegionType region;
  region.SetIndex(start);
  region.SetSize(size);

  // Initialize Image B
  trainingImage->SetLargestPossibleRegion(region);
  trainingImage->SetBufferedRegion(region);
  trainingImage->SetRequestedRegion(region);
  trainingImage->Allocate();
  OutputPixelType pix;
  pix = itk::NumericTraits<OutputPixelType>::Zero;
  trainingImage->FillBuffer(pix);

  // For each line of the ROIs file, we create a region iterator and
  // assign the value of the labels to the pixels

  std::ifstream roisFile;
  roisFile.open(roiFilename);

  unsigned int nbRois = 0;

  roisFile >> nbRois;

  std::cout << "Nb of ROIS " << int(nbRois) << std::endl;

  while (!roisFile.fail() && (nbRois > 0))
  {

    --nbRois;
    OutputPixelType label = 0;
    unsigned long   xUL, yUL, xBR, yBR, tmp_label = 0;

    roisFile >> tmp_label;
    roisFile >> xUL;
    roisFile >> yUL;
    roisFile >> xBR;
    roisFile >> yBR;

    label = static_cast<OutputPixelType>(tmp_label);

    std::cout << "Label : " << int(label) << std::endl;
    std::cout << "( " << xUL << " , " << yUL << " )" << std::endl;
    std::cout << "( " << xBR << " , " << yBR << " )" << std::endl;

    // Region creation

    start[0] = xUL;
    start[1] = yUL;

    size[0] = xBR - xUL;
    size[1] = yBR - yUL;

    region.SetSize(size);
    region.SetIndex(start);

    // Iterator creation
    using IteratorType = itk::ImageRegionIterator<OutputImageType>;
    IteratorType it(trainingImage, region);

    it.GoToBegin();

    // Iteration and pixel value assignment
    while (!it.IsAtEnd())
    {

      it.Set(static_cast<OutputPixelType>(label));

      // std::cout << (int)static_cast<OutputPixelType>(label) << " -- ";
      // std::cout << (int)it.Get() << std::endl;
      ++it;
    }
  }

  writer->SetInput(trainingImage);

  writer->Update();

  return EXIT_SUCCESS;
}