1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
/*
* Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
* Copyright (C) 2007-2012 Institut Mines Telecom / Telecom Bretagne
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Example usage:
./SEMModelEstimatorExample Input/ROI_QB_MUL_4.tif Output/SEMClassif.png 4 40 5
*/
//
// In this example, we present OTB's implementation of SEM, through the class
// \doxygen{otb}{SEMClassifier}. This class performs a stochastic version
// of the EM algorithm, but instead of inheriting from
// \doxygen{itk}{ExpectationMaximizationMixtureModelEstimator}, we chose to
// inherit from \subdoxygen{itk}{Statistics}{ListSample},
// in the same way as \doxygen{otb}{SVMClassifier}.
//
// The program begins with \doxygen{otb}{VectorImage} and outputs
// \doxygen{otb}{Image}. Then appropriate header files have to be included:
#include <iostream>
#include "itkVector.h"
#include "itkVariableLengthVector.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "otbImage.h"
#include "otbVectorImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
// \doxygen{otb}{SEMClassifier} performs estimation of mixture to fit the
// initial histogram. Actually, mixture of Gaussian pdf can be performed.
// Those generic pdf are treated in
// \subdoxygen{otb}{Statistics}{ModelComponentBase}. The Gaussian model
// is taken in charge with the class
// \subdoxygen{otb}{Statistics}{GaussianModelComponent}.
#include "otbSEMClassifier.h"
int main(int argc, char* argv[])
{
try
{
if (argc != 6)
{
std::cerr << "Unsupervised Image Segmentation with SEM approach\n";
std::cerr << argv[0] << " imageIn imgClassif num_of_class ";
std::cerr << "nbIteration size_of_the_neighborhood\n";
return EXIT_FAILURE;
}
// Input/Output images type are define in a classical way.
// In fact, a \doxygen{itk}{VariableLengthVector} is to be
// considered for the templated \code{MeasurementVectorType}, which
// will be used in the \code{ListSample} interface.
using PixelType = double;
using ImageType = otb::VectorImage<PixelType, 2>;
using ReaderType = otb::ImageFileReader<ImageType>;
using OutputImageType = otb::Image<unsigned char, 2>;
using WriterType = otb::ImageFileWriter<OutputImageType>;
char* fileNameIn = argv[1];
char* fileNameImgInit = nullptr;
char* fileNameOut = argv[2];
int numberOfClasses = atoi(argv[3]);
int numberOfIteration = atoi(argv[4]);
int neighborhood = atoi(argv[5]);
double terminationThreshold = 1e-5;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(fileNameIn);
reader->Update();
// Once the input image is opened, the classifier may be initialised by
// \code{SmartPointer}.
using ClassifType = otb::SEMClassifier<ImageType, OutputImageType>;
ClassifType::Pointer classifier = ClassifType::New();
// Then, it follows, classical initializations of the pipeline.
classifier->SetNumberOfClasses(numberOfClasses);
classifier->SetMaximumIteration(numberOfIteration);
classifier->SetNeighborhood(neighborhood);
classifier->SetTerminationThreshold(terminationThreshold);
classifier->SetSample(reader->GetOutput());
// When an initial segmentation is available, the classifier may use it
// as image (of type \code{OutputImageType}) or as a
// \doxygen{itk}{SampleClassifier} result (of type
// \subdoxygen{itk}{Statistics}{MembershipSample}).
if (fileNameImgInit != nullptr)
{
using ImgInitReaderType = otb::ImageFileReader<OutputImageType>;
ImgInitReaderType::Pointer segReader = ImgInitReaderType::New();
segReader->SetFileName(fileNameImgInit);
segReader->Update();
classifier->SetClassLabels(segReader->GetOutput());
}
// By default, \doxygen{otb}{SEMClassifier} performs initialization of
// \code{ModelComponentBase} by as many instantiation of
// \subdoxygen{otb}{Statistics}{GaussianModelComponent} as the number of
// classes to estimate in the mixture. Nevertheless, the user may add specific
// distribution into the mixture estimation. It is permitted by the use of
// \code{AddComponent} for the given class number and the specific distribution.
std::cerr << "Explicit component initialization\n";
using ClassSampleType = ClassifType::ClassSampleType;
using GaussianType = otb::Statistics::GaussianModelComponent<ClassSampleType>;
for (int i = 0; i < numberOfClasses; ++i)
{
GaussianType::Pointer model = GaussianType::New();
classifier->AddComponent(i, model);
}
// Once the pipeline is instantiated. The segmentation by itself may be
// launched by using the \code{Update} function.
try
{
classifier->Update();
}
catch (itk::ExceptionObject& err)
{
std::cerr << "ExceptionObject caught in " << argv[0] << "!\n";
std::cerr << err << std::endl;
return -1;
}
// The segmentation may outputs a result of type
// \subdoxygen{itk}{Statistics}{MembershipSample} as it is the
// case for the \doxygen{otb}{SVMClassifier}. But when using
// \code{GetOutputImage} the output is directly an Image.
//
// Only for visualization purposes, we choose to rescale the image of
// classes before saving it to a file. We will use the
// \doxygen{itk}{RescaleIntensityImageFilter} for this purpose.
using RescalerType = itk::RescaleIntensityImageFilter<OutputImageType, OutputImageType>;
RescalerType::Pointer rescaler = RescalerType::New();
rescaler->SetOutputMinimum(itk::NumericTraits<unsigned char>::min());
rescaler->SetOutputMaximum(itk::NumericTraits<unsigned char>::max());
rescaler->SetInput(classifier->GetOutputImage());
WriterType::Pointer writer = WriterType::New();
writer->SetFileName(fileNameOut);
writer->SetInput(rescaler->GetOutput());
writer->Update();
// Figure \ref{fig:RESSEMCLASSIF} shows the result of the SEM segmentation
// with 4 different classes and a contextual neighborhood of 3 pixels.
// \begin{figure}
// \center
// \includegraphics[width=0.6\textwidth]{SEMClassif.eps}
// \itkcaption[SEM Classification results]{SEM Classification results.}
// \label{fig:RESSEMCLASSIF}
// \end{figure}
//
// As soon as the segmentation is performed by an iterative stochastic
// process, it is worth verifying the output status: does the segmentation
// ends when it has converged or just at the limit of the iteration numbers.
std::cerr << "Program terminated with a ";
if (classifier->GetTerminationCode() == ClassifType::CONVERGED)
std::cerr << "converged ";
else
std::cerr << "not-converged ";
std::cerr << "code...\n";
// The text output gives for each class the parameters of the pdf (e.g. mean
// of each component of the class and there covariance matrix, in the case of a
// Gaussian mixture model).
classifier->Print(std::cerr);
}
catch (itk::ExceptionObject& err)
{
std::cerr << "Exception itk::ExceptionObject thrown !\n";
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
catch (...)
{
std::cerr << "Unknown exception thrown !\n";
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|