File: SOMClassifierExample.cxx

package info (click to toggle)
otb 8.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,030,436 kB
  • sloc: xml: 231,007; cpp: 224,490; ansic: 4,592; sh: 1,790; python: 1,131; perl: 92; makefile: 72
file content (192 lines) | stat: -rw-r--r-- 6,931 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/*
 * Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


#include <fstream>
#include "otbImage.h"
#include "otbSOMMap.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkImageRegionIterator.h"
#include "itkListSample.h"

/* Example usage:
./SOMClassifierExample Input/ROI_QB_MUL_1.png Input/ROI_QB_MUL_SOM.png Output/ROI_QB_MUL_SOMCLASS.png
*/


// This example illustrates the use of the
// \doxygen{otb}{SOMClassifier} class for performing a classification
// using an existing Kohonen's Self Organizing. Actually, the SOM
// classification consists only in the attribution of the winner
// neuron index to a given feature vector.
//
// We will use the SOM created in section \ref{sec:SOMColorTable} and
// we will assume that each neuron represents a class in the image.
//
// The first thing to do is include the header file for the
// class.

#include "otbSOMClassifier.h"

int main(int argc, char* argv[])
{

  if (argc != 4)
  {
    std::cout << "Usage : " << argv[0] << " inputImage modelFile outputImage" << std::endl;
    return EXIT_FAILURE;
  }

  const char* imageFilename  = argv[1];
  const char* mapFilename    = argv[2];
  const char* outputFilename = argv[3];

  using InputPixelType         = double;
  using LabelPixelType         = unsigned char;
  const unsigned int Dimension = 2;

  using PixelType = itk::VariableLengthVector<InputPixelType>;

  // As for the SOM learning step, we must define the types for the
  // \code{otb::SOMMap}, and therefore, also for the distance to be
  // used. We will also define the type for the SOM reader, which is
  // actually an \doxygen{otb}{ImageFileReader} which the appropriate
  // image type.

  using DistanceType  = itk::Statistics::EuclideanDistanceMetric<PixelType>;
  using SOMMapType    = otb::SOMMap<PixelType, DistanceType, Dimension>;
  using SOMReaderType = otb::ImageFileReader<SOMMapType>;

  using InputImageType = otb::VectorImage<InputPixelType, Dimension>;
  using ReaderType     = otb::ImageFileReader<InputImageType>;

  //  The classification will be performed by the
  //  \doxygen{otb}{SOMClassifier}, which, as most of the
  //  classifiers, works on
  //  \subdoxygen{itk}{Statistics}{ListSample}s. In order to be able
  //  to perform an image classification, we will need to use the
  //  \subdoxygen{itk}{Statistics}{ImageToListAdaptor} which is
  //  templated over the type of image to be adapted. The
  //  \code{SOMClassifier} is templated over the sample type, the SOMMap
  //  type and the pixel type for the labels.

  using SampleType     = itk::Statistics::ListSample<PixelType>;
  using ClassifierType = otb::SOMClassifier<SampleType, SOMMapType, LabelPixelType>;
  //
  //  The result of the classification will be stored on an image and
  //  saved to a file. Therefore, we define the types needed for this step.

  using OutputImageType = otb::Image<LabelPixelType, Dimension>;
  using WriterType      = otb::ImageFileWriter<OutputImageType>;
  //
  //  We can now start reading the input image and the SOM given as
  //  inputs to the program. We instantiate the readers as usual.

  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName(imageFilename);
  reader->Update();

  SOMReaderType::Pointer somreader = SOMReaderType::New();
  somreader->SetFileName(mapFilename);
  somreader->Update();
  //
  //  The conversion of the input data from image to list sample is
  //  easily done using the adaptor.

  SampleType::Pointer sample = SampleType::New();

  itk::ImageRegionIterator<InputImageType> it(reader->GetOutput(), reader->GetOutput()->GetLargestPossibleRegion());

  sample->SetMeasurementVectorSize(reader->GetOutput()->GetNumberOfComponentsPerPixel());
  it.GoToBegin();

  while (!it.IsAtEnd())
  {
    sample->PushBack(it.Get());
    ++it;
  }
  //
  //  The classifier can now be instantiated. The input data is set by
  //  using the \code{SetSample()} method and the SOM si set using the
  //  \code{SetMap()} method. The classification is triggered by using
  //  the \code{Update()} method.

  ClassifierType::Pointer classifier = ClassifierType::New();
  classifier->SetSample(sample.GetPointer());
  classifier->SetMap(somreader->GetOutput());
  classifier->Update();
  //
  //  Once the classification has been performed, the sample list
  //  obtained at the output of the classifier must be converted into an
  //  image. We create the image as follows :

  OutputImageType::Pointer outputImage = OutputImageType::New();
  outputImage->SetRegions(reader->GetOutput()->GetLargestPossibleRegion());
  outputImage->Allocate();
  //
  //  We can  now get a pointer to the classification result.

  ClassifierType::OutputType* membershipSample = classifier->GetOutput();
  //
  //  And we can declare the iterators pointing to the front and the
  //  back of the sample list.

  ClassifierType::OutputType::ConstIterator m_iter = membershipSample->Begin();
  ClassifierType::OutputType::ConstIterator m_last = membershipSample->End();
  //
  //  We also declare an \doxygen{itk}{ImageRegionIterator} in order
  //  to fill the output image with the class labels.

  using OutputIteratorType = itk::ImageRegionIterator<OutputImageType>;

  OutputIteratorType outIt(outputImage, outputImage->GetLargestPossibleRegion());
  //
  //  We iterate through the sample list and the output image and assign
  //  the label values to the image pixels.

  outIt.GoToBegin();

  while (m_iter != m_last && !outIt.IsAtEnd())
  {
    outIt.Set(m_iter.GetClassLabel());
    ++m_iter;
    ++outIt;
  }
  //
  //  Finally, we write the classified image to a file.

  WriterType::Pointer writer = WriterType::New();
  writer->SetFileName(outputFilename);
  writer->SetInput(outputImage);
  writer->Update();
  // Figure \ref{fig:SOMMAPCLASS} shows the result of the SOM classification.
  // \begin{figure}
  // \center
  // \includegraphics[width=0.35\textwidth]{ROI_QB_MUL_1.eps}
  // \includegraphics[width=0.2\textwidth]{ROI_QB_MUL_SOM.eps}
  // \includegraphics[width=0.35\textwidth]{ROI_QB_MUL_SOMCLASS.eps}
  // \itkcaption[SOM Image Classification]{Result of the SOM
  // learning. Left: RGB image. Center: SOM. Right: Classified Image}
  // \label{fig:SOMMAPCLASS}
  // \end{figure}

  return EXIT_SUCCESS;
}