File: TrainMachineLearningModelFromImagesExample.cxx

package info (click to toggle)
otb 8.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,030,436 kB
  • sloc: xml: 231,007; cpp: 224,490; ansic: 4,592; sh: 1,790; python: 1,131; perl: 92; makefile: 72
file content (158 lines) | stat: -rw-r--r-- 6,485 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/*
 * Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


/* Example usage:
./TrainMachineLearningModelFromImagesExample Input/QB_1_ortho.tif Input/VectorData_QB1.shp Output/clLIBSVMModelQB1.libsvm
*/


// This example illustrates the use of the
// \doxygen{otb}{MachineLearningModel} class. This class allows the
// estimation of a classification model (supervised learning) from images. In this example, we will train an SVM
// with 4 classes. We start by including the appropriate header files.
// List sample generator
#include "otbListSampleGenerator.h"

// Extract a ROI of the vectordata
#include "otbVectorDataIntoImageProjectionFilter.h"

// SVM model Estimator
#include "otbSVMMachineLearningModel.h"


// Image
#include "otbVectorImage.h"
#include "otbVectorData.h"

// Reader
#include "otbImageFileReader.h"
#include "otbVectorDataFileReader.h"

// Normalize the samples
//#include "otbShiftScaleSampleListFilter.h"


int main(int itkNotUsed(argc), char* argv[])
{
  const char* inputImageFileName  = argv[1];
  const char* trainingShpFileName = argv[2];
  const char* outputModelFileName = argv[3];

  using InputPixelType         = unsigned int;
  const unsigned int Dimension = 2;
  using InputImageType         = otb::VectorImage<InputPixelType, Dimension>;
  using VectorDataType         = otb::VectorData<double, 2>;
  using InputReaderType        = otb::ImageFileReader<InputImageType>;
  using VectorDataReaderType   = otb::VectorDataFileReader<VectorDataType>;

  // In this framework, we must transform the input samples store in a vector
  // data into a \subdoxygen{itk}{Statistics}{ListSample} which is the structure
  // compatible with the machine learning classes. On the one hand, we are using feature vectors
  // for the characterization of the classes, and on the other hand, the class labels
  // are scalar values. We first re-project the input vector data over the input image, using the
  // \doxygen{otb}{VectorDataIntoImageProjectionFilter} class. To convert the
  // input samples store in a vector data into a
  // \subdoxygen{itk}{Statistics}{ListSample}, we use the
  // \doxygen{otb}{ListSampleGenerator} class.

  // VectorData projection filter
  using VectorDataReprojectionType = otb::VectorDataIntoImageProjectionFilter<VectorDataType, InputImageType>;

  InputReaderType::Pointer inputReader = InputReaderType::New();
  inputReader->SetFileName(inputImageFileName);

  InputImageType::Pointer image = inputReader->GetOutput();
  image->UpdateOutputInformation();

  // Read the Vectordata
  VectorDataReaderType::Pointer vectorReader = VectorDataReaderType::New();
  vectorReader->SetFileName(trainingShpFileName);
  vectorReader->Update();

  VectorDataType::Pointer vectorData = vectorReader->GetOutput();
  vectorData->Update();

  VectorDataReprojectionType::Pointer vdreproj = VectorDataReprojectionType::New();

  vdreproj->SetInputImage(image);
  vdreproj->SetInput(vectorData);
  vdreproj->SetUseOutputSpacingAndOriginFromImage(false);

  vdreproj->Update();

  using ListSampleGeneratorType = otb::ListSampleGenerator<InputImageType, VectorDataType>;
  ListSampleGeneratorType::Pointer sampleGenerator;
  sampleGenerator = ListSampleGeneratorType::New();

  sampleGenerator->SetInput(image);
  sampleGenerator->SetInputVectorData(vdreproj->GetOutput());
  sampleGenerator->SetClassKey("Class");

  sampleGenerator->Update();


  // std::cout << "Number of classes: " << sampleGenerator->GetNumberOfClasses() << std::endl;

  // using ListSampleType = ListSampleGeneratorType::ListSampleType;
  // using ShiftScaleFilterType = otb::Statistics::ShiftScaleSampleListFilter<ListSampleType, ListSampleType>;

  // // Shift scale the samples
  // ShiftScaleFilterType::Pointer trainingShiftScaleFilter = ShiftScaleFilterType::New();
  // trainingShiftScaleFilter->SetInput(concatenateTrainingSamples->GetOutput());
  // trainingShiftScaleFilter->SetShifts(meanMeasurementVector);
  // trainingShiftScaleFilter->SetScales(stddevMeasurementVector);
  // trainingShiftScaleFilter->Update();


  // Now, we need to declare the machine learning model which will be used by the
  // classifier. In this example, we train an SVM model. The
  // \doxygen{otb}{SVMMachineLearningModel} class inherits from the pure virtual
  // class \doxygen{otb}{MachineLearningModel} which is templated over the type of
  // values used for the measures and the type of pixels used for the labels. Most
  // of the classification and regression algorithms available through this
  // interface in OTB is based on the OpenCV library \cite{opencv_library}. Specific methods
  // can be used to set classifier parameters. In the case of SVM, we set here the type
  // of the kernel. Other parameters are let with their default values.

  using SVMType = otb::SVMMachineLearningModel<InputImageType::InternalPixelType, ListSampleGeneratorType::ClassLabelType>;

  SVMType::Pointer SVMClassifier = SVMType::New();

  SVMClassifier->SetInputListSample(sampleGenerator->GetTrainingListSample());
  SVMClassifier->SetTargetListSample(sampleGenerator->GetTrainingListLabel());

  SVMClassifier->SetKernelType(CvSVM::LINEAR);

  // The machine learning interface is generic and gives access to other classifiers. We now train the
  // SVM model using the \code{Train} and save the model to a text file using the
  // \code{Save} method.

  SVMClassifier->Train();
  SVMClassifier->Save(outputModelFileName);


  // You can now use the \code{Predict} method which takes a
  // \subdoxygen{itk}{Statistics}{ListSample} as input and estimates the label of each
  // input sample using the model. Finally, the
  // \doxygen{otb}{ImageClassificationModel} inherits from the
  // \doxygen{itk}{ImageToImageFilter} and allows classifying pixels in the
  // input image by predicting their labels using a model.
}