1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
/*
* Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Example usage:
./TrainMachineLearningModelFromSamplesExample Output/clSVMModelFromSamples.svm
*/
// This example illustrates the use of the \doxygen{otb}{SVMMachineLearningModel} class, which inherits from the
// \doxygen{otb}{MachineLearningModel} class. This class allows the
// estimation of a classification model (supervised learning) from samples. In this example, we will train an SVM model
// with 4 output classes, from 1000 randomly generated training samples, each of them having 7 components.
// We start by including the appropriate header files.
// List sample generator
#include "otbListSampleGenerator.h"
// Random number generator
// SVM model Estimator
#include "otbSVMMachineLearningModel.h"
int main(int argc, char* argv[])
{
if (argc != 2)
{
std::cerr << "Usage: " << argv[0] << " outputModelFileName" << std::endl;
return EXIT_FAILURE;
}
// The input parameters of the sample generator and of the SVM classifier are initialized.
int nbSamples = 1000;
int nbSampleComponents = 7;
int nbClasses = 4;
const char* outputModelFileName = argv[1];
// Two lists are generated into a \subdoxygen{itk}{Statistics}{ListSample} which is the structure
// used to handle both lists of samples and of labels for the machine learning classes derived from
// \doxygen{otb}{MachineLearningModel}. The first list is composed of feature vectors representing
// multi-component samples, and the second one is filled with their corresponding class labels. The
// list of labels is composed of scalar values.
// Input related typedefs
using InputValueType = float;
using InputSampleType = itk::VariableLengthVector<InputValueType>;
using InputListSampleType = itk::Statistics::ListSample<InputSampleType>;
// Target related typedefs
using TargetValueType = int;
using TargetSampleType = itk::FixedArray<TargetValueType, 1>;
using TargetListSampleType = itk::Statistics::ListSample<TargetSampleType>;
InputListSampleType::Pointer InputListSample = InputListSampleType::New();
TargetListSampleType::Pointer TargetListSample = TargetListSampleType::New();
InputListSample->SetMeasurementVectorSize(nbSampleComponents);
// In this example, the list of multi-component training samples is randomly filled with a random number
// generator based on the \subdoxygen{itk}{Statistics}{MersenneTwisterRandomVariateGenerator} class.
// Each component's value is generated from a normal law centered around the corresponding class label of
// each sample multiplied by 100, with a standard deviation of 10.
itk::Statistics::MersenneTwisterRandomVariateGenerator::Pointer randGen;
randGen = itk::Statistics::MersenneTwisterRandomVariateGenerator::GetInstance();
// Filling the two input training lists
for (int i = 0; i < nbSamples; ++i)
{
InputSampleType sample;
TargetValueType label = (i % nbClasses) + 1;
// Multi-component sample randomly filled from a normal law for each component
sample.SetSize(nbSampleComponents);
for (int itComp = 0; itComp < nbSampleComponents; ++itComp)
{
sample[itComp] = randGen->GetNormalVariate(100 * label, 10);
}
InputListSample->PushBack(sample);
TargetListSample->PushBack(label);
}
// Displays the corresponding values
for (int i = 0; i < nbSamples; ++i)
{
std::cout << i + 1 << "-label = " << TargetListSample->GetMeasurementVector(i) << std::endl;
std::cout << "sample = " << InputListSample->GetMeasurementVector(i) << std::endl << std::endl;
}
// Once both sample and label lists are generated, the second step consists in
// declaring the machine learning classifier. In our case we use an SVM model
// with the help of the \doxygen{otb}{SVMMachineLearningModel} class which is
// derived from the \doxygen{otb}{MachineLearningModel} class.
// This pure virtual class is based on the machine learning framework of the
// OpenCV library (\cite{opencv_library}) which handles other classifiers than
// the SVM.
using SVMType = otb::SVMMachineLearningModel<InputValueType, TargetValueType>;
SVMType::Pointer SVMClassifier = SVMType::New();
SVMClassifier->SetInputListSample(InputListSample);
SVMClassifier->SetTargetListSample(TargetListSample);
SVMClassifier->SetKernelType(CvSVM::LINEAR);
// Once the classifier is parametrized with both input lists and default parameters, except
// for the kernel type in our example of SVM model estimation, the model
// training is computed with the \code{Train} method. Finally, the \code{Save} method
// exports the model to a text file. All the available classifiers based on OpenCV are
// implemented with these interfaces. Like for the SVM model training, the other classifiers
// can be parametrized with specific settings.
SVMClassifier->Train();
SVMClassifier->Save(outputModelFileName);
}
|